Use of biopolymers in coating paper for food packaging: a brief review




Cellulose; Proteins; Paper; Starch; Teaching.


Paper-based packaging is abundant, non-toxic, from renewable resource, biodegradable material and of low marketing cost compared to other conventional materials. However, paper offers low resistance to water vapor, oils and gases, which may restrict its use for perishable products. As an alternative, biopolymers are used for coating papers, such as cellulose derivatives, starches, chitosan or chitin, proteins (animal or vegetable) and lipids. These biopolymers offer advanced and enhanced properties when used for coating papers. The objective of this review is to address the main biopolymers studied and tested for coating paper in food packaging, describing their main characteristics, in addition to presenting works that show that the mentioned biopolymers have shown to be promising, having compatible properties for the use on a large scale in the coating of paper in packaging. With this work, we hope to contribute to the advancement of scientific research and projects that promote the use of biopolymers in paper coating for use in production of food packaging.


Ahmad, M., Nirmal, N. P., Danish, M., Chuprom, J., & Jafarzedeh, S. (2016). Characterisation of composite films fabricated from collagen/ chitosan and collagen/soy protein isolate for food packaging applications. RSC Advances, 6, 82191-82204.

Aloui, H., Baraket, K., Sendon, R., Silva, A. S., & Khwaldia, K. (2019). Development and characterization of novel composite glycerol-plasticized films based on sodium caseinate and lipid fraction of tomato pomace by-product. International Journal Of Biological Macromolecules, 139, 128-138.

Amin, U., Khan, M. U., Majeed, Y., Rebezov, M., Khayrullin, M., Chung, I. M., & Thiruvengadam, M. (2021). Potentials of polysaccharides, lipids and proteins in biodegradable food packaging applications. International Journal Of Biological Macromolecules, 183, 2184-2198.

Aulin, C., & Ström, G. (2013). Multilayered Alkyd Resin/Nanocellulose Coatings for Use in Renewable Packaging Solutions with a High Level of Moisture Resistance. Industrial & Engineering Chemistry Research, 52, 2582−2589.

Avena-bustillos, R. J., & Krochta, J. M. (1993). Water Vapor Permeability of Caseinate-Based Edible Films as Affected by pH, Calcium Crosslinking and Lipid Content. J. Food Sci., 58, 904.

Bakshi, P. S., Selvakumar, D.; Kadirvelu, K., & Kumar, N. S. (2020). Chitosan as an environment friendly biomaterial – a review on recent modifications and applications. International Journal of Biological Macromolecules, 150, 1072-1083.

Bie, P., Liu, P., Yu, L., Li, X., Chen, L., & Xie, F. (2013). The properties of antimicrobial films derived from poly (lactic acid)/starch/chitosan blended matrix. Carbohydrate Polymers, 98 (1), 959-966.

Biji, K. B., Ravishankar, C. N., Mohan, C. O., & Srinivasa Gopal, T. K. (2015). Smart packaging systems for food applications: a review. Journal of food science and technology, 52 (10), 6125-6135.

BRASIL. Agência Nacional de Vigilância Sanitária. Resolução RDC nº 2, de 15 de janeiro de 2007. Regulamento Técnico Sobre Aditivos Alimentares. Brasília, DF, 2007.

BRASIL. Agência Nacional de Vigilância Sanitária. Resolução RDC nº 259, de 20 de setembro de 2002. Regulamento técnico para rotulagem de alimentos embalados. Brasília, DF, 2002.

Cazón, P., & Vázquez, M. (2019). Applications of chitosan as food packaging materials. In Sustainable Agriculture Reviews, 36, 81-123.

Chen, X., Liu, P., Shang, X., Xie, F., Jiang, H., & Wang, J. (2017). Investigation of rheological properties and conformation of cassava starch in zinc chloride solution. Starch - Stärke, 69(9-10), 1600384.

Chi, K., Wang, H., & Catchmark, J. M. (2020) Sustainable starch-based barrier coatings for packaging applications. Food Hydrocolloids, 103, 105696.

Conde-petit, B., Escher, F., & Nuessli, J. (2006) Structural features of starch-flavor complexation in food model systems. Trends in Food Science & Technology, 17(5), 227-235.

Das, P., & Tiwari, P. (2018). Valorization of packaging plastic waste by slow pyrolysis. Resources, Conservation and Recycling, 128, 69-77.

Delezuk, J. A. M., Pavinatto, A., Moraes, M. L., Shimizu, F. M., Rodrigues, V. C., Campana-filho, S. P., Ribeiro, S. J. L., & Oliveira, O. N. (2017). Silk fibroin organization induced by chitosan in layer-by-layer films: Application as a matrix in a biosensor. Carbohydrate Polymers, 155, 146–151.

Despond, S., Espuche, E., Cartier, N., & Domard, A. (2005). Barrier properties of paper–chitosan and paper–chitosan–carnauba wax films. Journal of Applied Polymer Science, 98(2), 704-710.

Díaz-montes, E., & Castro-muñoz, R. (2021). Trends in chitosan as a primary biopolymer for functional films and coatings manufacture for food and natural products. Polymers, 13(5), 767.

Domenek, S., Feuilloley, P., Gratraud, J., Morel, M. H., & Guilbert, S. (2004). Biodegradability of wheat gluten based bioplastics. Chemosphere, 54(4), 551-559.

Duran, a., & kahve, H. I. (2020). The effect of chitosan coating and vacuum packaging on the microbiological and chemical properties of beef. Meat science, 162, 107961.

Eliasson, A.C. (1994). Interactions between starch and lipids studied by DSC. Thermochimica Acta, 246(2), 343-356.

Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible films and coatings: a review. Materials Science and Engineering: C, 33(4), 1819–1841.

Ferfera-harrar, H., & Dairi, N. (2014). Green nanocomposite films based on cellulose acetate and biopolymer-modified nanoclays: studies on morphology and properties. Iranian. Polymer Journal, 23(12), 917–931.

Ferrer, A., Pal, L., & Hubbe, M. (2017). Nanocellulose in packaging: Advances in barrier layer Technologies. Industrial Crops and Products, 95, 574-582.

Freitas, C. A. S., de Sousa, P. H. M., Soares, D. J., da Silva, J. Y. G., Benjamin, S. R., & Guedes, M. I. F. (2019). Carnauba wax uses in food–A review. Food chemistry, 291, 38-48.

Gontard, N., Guilbert, S., & CUQ, J. L. (1993). Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. Journal of food science, 58(1), 206-211.

Goslinska, M.; & Heinrich, S. (2019). Characterization of waxes as possible coating material for organic aerogels. Powder Technology, 357, 223-231.

Guillaume, C., Pinte, J., Gontard, & N., Gastaldi, E. (2010). Wheat gluten-coated papers for bio-based food packaging: Structure, surface and transfer properties. Food Research International, 43(5), 1395 – 1401.

Gutiérrez, T.J., & Tovar, J. (2021). Update of the concept of type 5 resistant starch (RS5): Self-assembled starch V-type complexes. Trends in Food Science & Technology, 109, 711-724.

Han, H., & Krochta, J. M. (2001). Physical Properties and Oil Absorption of Whey-Protein-Coated Paper. J. Food Sci., 66, 294.

He, Y., Li, H., Fei, X., & Peng, L. (2021). Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of paper for food packaging applications. Carbohydrate polymers, 252, 117156.

Iamareerat, B., Singh, M., Sadiq, M. B., & Anal, A. K. (2018). Reinforced cassava starch based edible film incorporated with essential oil and sodium bentonite nanoclay as food packaging material. Journal of Food Science and Technology, 55(5), 1953-1959.

Nagy, E.M., Coţa, C., Cioica, N., Gyorgy, Z., Todica, M., & Cozar, O. (2017). FT-IR investigation of starch based composite reinforced with Miscanthus fibers. AIP Conference Proceedings, 1917(1), 040009.

Imran, M., Klouj, A., revol-junelles, A. M., & Desobry, S. (2014). Controlled release of nisin from HPMC, sodium caseinate, poly-lactic acid and chitosan for active packaging applications. Journal of Food Engineering, 143, 178-185.

Indriati, L., Elyani, N., & Dina, S. F. (2020). Empty fruit bunches, potential fiber source for Indonesian pulp and paper industry. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, 980, 012045.

Istiqola, A., & Syafiuddin, A. (2020). A review of silver nanoparticles in food packaging technologies: Regulation, methods, properties, migration, and future challenges. Journal of the Chinese Chemical Society, 67(11), 1942-1956.

Jafarzadeh, S., Alias, S. K., Ariffin, F., Mahmud, S., Najafi, A., & Sheibani, S. (2017). Characterization of a new biodegradable edible film based on semolina loaded with nano kaolin. International Food Research Journal, 24(1), 304.

Jin, K., Tang, Y., Liu, J., Wang, J., & Ye, C. (2021) Nanofibrillated cellulose as coating agent for food packaging paper. International Journal of Biological Macromolecules, 168, 331-338.

Khwaldia, K., Basta, A. H., Aloui, H., & El-saied, H. (2014). Chitosancaseinate bilayer coatings for paper packaging materials. Carbohydrate Polymers, 99, 508−516.

Krishnan, V., Awana, M., Singh, A., Goswami, S., Vinutha, T., Kumar, R R., Singh, S. P., Sathyavathi, T., Sachdev, A., & Praveen, S. (2021). Starch molecular configuration and starch-sugar homeostasis: Key determinants of sweet sensory perception and starch hydrolysis in pearl millet (Pennisetum glaucum). International Journal of Biological Macromolecules, 183, 1087-1095.

Krochta, J. M., Singh, R. P., & Wirakartakusumah, M. A. (Eds). (1992). Advances in Food Engineering, CRC Press, Boca Raton.

Kuorwel, K. K., Cran, M. J., Orbell, J. D., Buddhadasa, S., & Bigger, S. W. (2015). Review of mechanical properties, migration, and potential applications in active food packaging systems containing nanoclays and nanosilver. Comprehensive Reviews in Food Science and Food Safety, 14, 411-430.

Le, B.P., Rondeau, C., & Buléon, A. (2005). Structural investigation of amylose complexes with small ligands: Helical conformation, crystalline structure and thermostability. International Journal of Biological Macromolecules, 35(1–2), 17.

Li, F., Mascheroni, E., & Piergiovanni, L. (2015). The potential of nanocellulose in the packaging field: a review. Packaging Technology and Science, 28(6), 475-508.

Lin, M., Shang, X., Liu, P., Xie, F., Chen, X., & Sun, Y. (2016). Zinc chloride aqueous solution as a solvent for starch. Carbohydrate Polymers, 136, 266-273.

Liu, C., Zheng, Z., Xi, C., & Liu, Y. (2021). Exploration of the natural waxes-tuned crystallization behavior, droplet shape and rheology properties of O/W emulsions. Journal of Colloid and Interface Science, 587, 417-428.

Liu, P., Li, Y., Shang, X., & Xie, F. (2019). Starch–zinc complex and its reinforcement effect on starch-based materials. Carbohydrate Polymers, 206, 528-538.

Lorevice, M. V., Otoni, C. G., Moura, M. R. D., & Mattoso, L. H. C. (2016). Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films. Food Hydrocolloids, 52, 732-740.

Luo, Z., Zou, J., Chen, H., Cheng, W., Fu, X., & Xiao, Z. (2016). Synthesis and characterization of amylose–zinc inclusion complexes. Carbohydrate Polymers, 137, 314 – 320.

Ma, W., Tang, C. H., Yang, X. Q., & Yin, S. W. (2013). Fabrication and characterization of kidney bean (Phaseolus vulgaris L.) protein isolate−chitosan composite films at acidic pH. Food Hydrocolloids, 31, 237-247.

Ma, Z., Hu, X., & Boye, J. I. (2020). Research advances on the formation mechanism of resistant starch type III: A review. Critical Reviews in Food Science and Nutrition, 60(2), 276 – 297.

Maraveas, C. (2020). Production of sustainable and biodegradable polymers from agricultural waste. Polymers, 2(5), 1127.

Martins, C. C. N., Dias, M. C., Mendonça, M. C., Durães, A. F. S., Silva, L. E., Félix, J. R., Damásio, R. A. P., & Tonoli, G. H. D. (2021). Optimizing cellulose microfibrillation with NaOH pretreatments for unbleached Eucalyptus pulp. Cellulose, 28(18), 11519-11531.

Mihalca, V., Kerezsi, A. D., Weber, A., Gruber-traub, C., Schmucker, J., Vodnar, D. C., & Pop, O. L. (2021). Protein-based films and coatings for food industry applications. Polymers, 13(5), 769.

Mohd, N., Draman, S., Salleh, M., & Yusof, N. (2017) Dissolution of cellulose in ionic liquid: A review. AIP Conference Proceedings, 1809(1), 02003.

Mustafa, M. A., Ali, A., Manickam, S., & Siddiqui, Y. (2014). Ultrasound-assisted chitosan-surfactant nanostructure assemblies: Towards maintaining postharvest quality of tomatoes. Food and Bioprocess Technology, 7, 2102-2111.

Nair, A., Kansal, D., Khan, A., & Rabnawaz, M. (2022). New alternatives to single‐use plastics: Starch and chitosan‐graft‐polydimethylsiloxane‐coated paper for water‐and oil‐resistant applications. Nano Select, 3(2), 459-470.

Nguyen, T. P. T., Nguyen, D. V., Thuc, C. N. H., Bui, Q. B., Perré, P., & Nguyen, D. M. (2021). Valorization of starch nanoparticles on microstructural and physical properties of PLA-starch nanocomposites. Journal of Applied Polymer Science, 139(10), 51757.

Oprea, M., & Voicu, S. I. (2020). Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydrate Polymers, 247, 116683.

Pereira, N. R. L., Anjos, F. E., & Magnago, R. F. (2019). Resíduos lignocelulósicos da bananicultura: uma revisão sobre os processos químicos de extração da celulose. Rev. Virtual Quim, 11(4), 165-1.

Plappert, S. F., Quraishi, S., PircheR, N., Mikkonen, K. S., Veigel, S., Klinger, K. M., Potthast, A., Rosenau, T., & Liebner, F. W. (2018). Transparent, Flexible, and Strong 2,3-Dialdehyde Cellulose Films with High Oxygen Barrier Properties Biomacromolecules, 19(7), 2969-2978.

Rastogi, V. K., & Samyn, P. (2015). Bio-based coatings for paper applications. Coatings, 5(4), 887-930.

Rocha, J. C. B., Lopes, J. D., Mascarenhas, M. C. N., Arellano, D. B., Guerreiro, L. M. R., & Cunha, R. L. (2012). Thermal and rheological properties of organogels formed by sugarcane or candelilla wax in soybean oil. Food Research International, 50, 318-323.

Romanazzi, G., FelizianI, E., Baños, S. B., & Sivakumar, D. (2017). Shelf-life extension of fresh fruit and vegetables by chitosan treatment. Critical Reviews in Food Science and Nutrition, 57, 579-601.

Sharma, S.K., Sharma, P.R., Lin, S., Chen, H., Johnson, K., Wang, R., BorgeS, W., Zhan, C., & Hsiao, B.S. (2020). Reinforcement of natural rubber latex using jute carboxycellulose nanofibers extracted using nitro-oxidation method. Nanomaterials, 10(4), 706.

Shen, Z., rajabi-abhari, A., Oh, K.; Yang, G., Youn, H.J., & Lee, H.L. (2021). Improving the Barrier Properties of Packaging Paper by Polyvinyl Alcohol Based Polymer Coating—Effect of the Base Paper and Nanoclay. Polymers, 13(8), 1334.

Souza, A. C., Gotoa, G. E. O., Mainardia, J. A. Coelho, A. C. V., & Tadini, C. C. (2013). Cassava starch composite films incorporated with cinnamon essential oil: antimicrobial activity, microstructure, mechanical and barrier properties. LWT - Food Science and Technology, 54(2), 346–352.

Souza, M. P., Vaz, A. F. M., Cerqueira, M. A., Texeira, J. A., Vicente, A. A., & Carneiro-da-cunha, M. G. (2015). Effect of an edible nanomultilayer coating by electrostatic self-assembly on the shelf life of fresh-cut mangoes. Food and Bioprocess Technology, 8, 647-654.

Sundaram, J., Pant, J., Goudie, M. J., Mani, S., & Handa, H. (2016). Antimicrobial and physicochemical characterization of biodegradable, nitric oxide-releasing nanocellulose-chitosan packaging membranes. Journal of Agricultural and Food Chemistry, 64, 5260-5266.

Talón, E., Trifkovic, K. T., Nedovic, V. A. Z., Bugarski, B. M., Vargas, M., Chiralt, A., & Gonzalez-Martínez, C. (2017). Antioxidant edible films ́ based on chitosan and starch containing polyphenols from thyme extracts. Carbohydrate Polymers, 157, 153−1161.

Tang, Y., Xie, F., Zhang, D., Zhu, M., Liu, L., & Liu, L. (2015). Physical properties and prebiotic activity of maize starch-based functional films. Starch - Stärke, 67(1-2), 124-131.

Tanpichai, S., Witayakran, S., Wootthikanokkhan, J., Srimarut, Y., Woraprayote, W., & Malila, Y. (2020). Mechanical and antibacterial properties of the chitosan coated cellulose paper for packaging applications: Effects of molecular weight types and concentrations of chitosan. International journal of biological macromolecules, 155, 1510-1519.

Tian, W., Gao, X., Zhang, J., Yu, J., & Zhang, J. (2022). Cellulose nanosphere: Preparation and applications of the novel nanocellulose. Carbohydrate Polymers, 277, 118863.

Trezza, T. A., Vergano, P. J. (1994). Grease Resistance of Corn Zein Coated Paper. J. Food Sci., 59, 912.

Tucker, N., & Johnson, M. (2004). Low Environmental Impact Polymers. 1. ed. [s.l.] Rapra Technology Limited Shawbury.

Vaezi, K., Asadpour, G., & Sharifi, S. H. (2019). Effect of coating with novel bio nanocomposites of cationic starch/cellulose nanocrystals on the fundamental properties of the packaging paper. Polymer Testing, 80, 106080.

Vera, P., Canellas, E., & Nerín, C. (2020). Compounds responsible for off-odors in several samples composed by polypropylene, polyethylene, paper and cardboard used as food packaging materials. Food chemistry, 309, 125792.

Verlee, A., Mincke, S., & Stevens, C. V. (2017). Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydrate Polymers, 164, 268-283.

Walstra, P., Wouters, J. T. M., & Geurts, T. J. (2006). Dairy Science and Technology. 2. ed. [s.l.] Taylor & Francis Group.

Wang, H., Guo, T., & Li, H. (2016). Evaluation of viscosity and printing quality of chitosan-based flexographic inks: The effect of chitosan molecular weight. Journal of Applied Polymer Science, 133, 43997.

Wang, H., Qian, J., & Ding, F. (2018). Emerging Chitosan-Based Films for Food Packaging Applications. Journal of Agricultural and Food Chemistry, 66(2), 395-413.

Wang, W., Gu, F., Deng, Z., Zhu, Y., Zhu, J., Guo, T., Song, J., & Xiao, H. (2021). Multilayer surface construction for enhancing barrier properties of cellulose-based packaging. Carbohydrate Polymers, 255, 17431.

Xie, F., Pollet, E., Halley, P. J., & Avérous, L. (2013) Starch-based nano-biocomposites. Progress in Polymer Science, 38(10-11), 1590-1628.

Xu, C., Lu, M., Wu, K., & Shi, J. (2021). Functionalization of nano-cellulose by coupling agent with green strategy, Inorganic Chemistry Communications, 134, 108939.

Yang, G., Kong, H., Chen, Y., Liu, B., Zhu, D., Guo, L., & Wel, G. (2021). Recent advances in the hybridization of cellulose and carbon nanomaterials: Interactions, structural design, functional tailoring, and applications. Carbohydrate Polymers, 279, 118947.

Yang, J., Xie, F., Wen, W., Chen, L., Shang, X., & Liu, P. (2016). Understanding the structural features of high-amylose maize starch through hydrothermal treatment. International Journal of Biological Macromolecules, 84, 268-274.

Yenidoğan, S. (2020). Nanocrystalline Cellulose and Polyvinyl Alcohol Coating Application to Cardboard Packaging Papers and Investigation of the Effects on Paper Properties. Materials Science, 26(3), 317-322.

Yook, S., Park, H., & Park, H. (2020). Barrier coatings with various types of cellulose nanofibrils and their barrier properties. Cellulose, 27, 4509–4523.

Zabar, S. (2009). Studying different dimensions of amylose-long chain fatty acid complexes: Molecular, nano and micro level characteristics. Food Hydrocolloids, 23(7), 1918-1925.

Zambrano, F., Starkey, H., Wang, Y., Assis, C. A., VendittI, R., Pal, L., Jameel, H., Hubbe, M. A., Rojas, O. J., & Gonzalez, R. (2020). Using micro-and nanofibrillated cellulose as a means to reduce weight of paper products: A review. BioResources, 15(2), 4553-4590.

Zhang, H., & Sablani, S. (2021). Biodegradable packaging reinforced with plant-based food waste and by-products. Current Opinion in Food Science, 42, 61-68.

Zhu, H., Han, Z., & da-wen sun, J. (2022). Modification of cellulose from sugarcane (Saccharum officinarum) bagasse pulp by cold plasma: Dissolution, structure and surface chemistry analysis. Food Chemistry, 374, 131675.



How to Cite

MARTINS, C. C. N. .; CUNHA, J. S. .; FURTINI, A. C. C. .; SANTOS, C. A. dos .; MIRANDA, E. H. de N. .; SILVA, R. C. de S. .; GOMES , D. A. C. .; TONOLI, G. H. D. .; PACHECO, A. F. C. .; PAIVA , P. H. C. . Use of biopolymers in coating paper for food packaging: a brief review. Research, Society and Development, [S. l.], v. 11, n. 7, p. e26511729844, 2022. DOI: 10.33448/rsd-v11i7.29844. Disponível em: Acesso em: 3 jul. 2022.



Agrarian and Biological Sciences