Experimental models for induction of muscle injury in rodents: literature review





Experimental models; Animal model; Lesions and wounds; Musculoskeletal; Mice.


Objective: the present study aims to evidence the most recurrent muscle injury techniques in the literature. Methodology: This is a bibliographical research of the integrative review type of literature. The articles were searched in 2021, from November 22 to 24, in the PubMed database, using the eligibility criteria. Results and Discussion: According to the search strategy used in this study, of all articles only 28 studies met the eligibility criteria. When analyzing the publication journals, it was observed that the most recurrent were PLoS One (7.14%), Int J Med Sci (7.14%), and J Trauma Acute Care with (7.14%). It was also evidenced that the number of publications on the subject has been growing over the years, when it compared the year 2016 (10.71%) with later years, except in 2019 with the same percentage of 10.71% and 2021 with zero publication. The breeds most used in the experiments were Sprague-Dawley (32.14%) and Wistar with 25%. There was a predominance of models due to contusion (35.71%), followed by excessive use injury (10.71%), and traumatic injury (10.71%), for induction of muscle injury in rodents. Conclusion: According to the results of this review, the most recurrent muscle injury induction models were injury by contusion, followed by excessive use injury, and traumatic injury. However, all the techniques addressed in the present study were able to reproduce with excellence the mechanism of muscle injury.


Andrade, R. M..; Gagliardi, J. F. L.; Kiss, M. A. P. D. (2007). Relação entre índices de muscularidade e o desempenho do salto vertical. Revista brasileira de ciência e movimento, 15 (1), 61-7.

Aurora, A.; Roe, J. L..; Umoh, N. A.; Dubick, M. et al. (2018). Fresh whole blood resuscitation does not exacerbate skeletal muscle edema and long-term functional deficit after ischemic injury and hemorrhagic shock. J Trauma Acute Care Surg, 84 (5), 786-794.

Balasubramaniam, A.; Sheriff, S.; Friend, L. A.; James, J. H. (2018). Phosphodiesterase 4B knockout prevents skeletal muscle atrophy in rats with burn injury. Am J Physiol Regul Integr Comp Physiol, 315 (2), R429-r433.

Barbe, M. F.; Hilliard, B. A..; Amin, M.; Harris, M. Y. et al. (2020). Blocking CTGF/CCN2 reduces established skeletal muscle fibrosis in a rat model of overuse injury. Faseb j, 34 (5), 6554-6569.

Barbe, M. F.; Hilliard, B. A.; Fisher, P. W..; White, A. R. et al. (2020a). Blocking substance P signaling reduces musculotendinous and dermal fibrosis and sensorimotor declines in a rat model of overuse injury. Connect Tissue Res, 61 (6), 604-619.

Barros, V. J. da S., Pereira, M. M. L., Silvino, V. O., Severo, J. S., Silva, M. S. da., & Sousa, B. L. S. C. (2020). Efeito da suplementação de resveratrol no dano muscular em modelo animal: uma revisão integrativa. Pesquisa, Sociedade e Desenvolvimento, 9 (11), e73591110568.

Botelho, L. L. R., Cunha, C. C. A. & Macedo, M. (2011). O método da revisão integrativa nos estudos organizacionais. Gestão Soc., 5(11), 121-136.

Chiaramonti, A. M.; Robertson, A. D.; Nguyen, T. P..; Jaffe, D. E. et al. (2017). Pulsatile Lavage of Musculoskeletal Wounds Causes Muscle Necrosis and Dystrophic Calcification in a Rat Model. J Bone Joint Surg Am, 99 (21), 1851-1858.

Chongsatientam, A.; Yimlamai, T. (2016). Therapeutic Pulsed Ultrasound Promotes Revascularization and Functional Recovery of Rat Skeletal Muscle after Contusion Injury. Ultrasound Med Biol, 42 (12), 2938-2949.

Dantas, M. G. B.; Damasceno, C. M. D.; Barros, V. R. P.; Menezes, E. S. et al. (2017). Creation of a contusion injury method for skeletal muscle in rats with differing impacts. Acta Cir Bras, 32 (5), 369-375.

Dos Santos Haupenthal, D. P.; Zortea, D.; Zaccaron, R. P.; De Bem Silveira, G. et al. (2020). Effects of phonophoresis with diclofenac linked gold nanoparticles in model of traumatic muscle injury. Mater Sci Eng C Mater Biol Appl, 110, 110681.

Ferreira, L. M.; Hochman, B.; Barbosa, M. V. J. (2005). Experimental model in research. Acta cirúrgica brasileira. 20 (2), 28-34.

Fernandes, T. L.; Pedrinelli, A.; Hernandez, A. J. (2011). Muscle injury – physiopathology, diagnostic, treatment and clinical presentation. Rev Bras Ortop, 46 (3), 247-55.

Filho, C. M. F.; Silva, A. M. S.; Sudo, R. T. S.; Takiya, C. M.; Machado, J. C. (2015). Laceration in rat gastrocnemius. Following-up muscle repairing by ultrasound biomicroscopy (in vivo), contractility test (ex vivo) and histopathology. Acta Cirúrgica Brasileira, 30 (1), 13.

Fleming, I. D.; Krezalek, M. A.; Belogortseva, N.; Zaborin, A. et al. (2017). Modeling Acinetobacter baumannii wound infections: The critical role of iron. J Trauma Acute Care Surg, 82 (3), 557-565.

Herring, S. A. & Nilson, K. L. (1987). Introduction to overuse injuries. Clin Sports Med. 6 (2), 225-39.

Hochman, B.; Ferreira, L. M.; Vilas Boas, F. C. & Mariano, M. (2004). Experimental model in hamsters (Mesocricetus auratus) to study heterologous graft of scars and cutaneous deseases in plastic surgery. Acta Cirúrgica Brasileira [online]. 19 (1), 69-78.

Hsu, Y. J..; Ho, C. S.; Lee, M. C.; Ho, C. S. et al. (2020). Protective Effects of Resveratrol Supplementation on Contusion Induced Muscle Injury. Int J Med Sci, 17 (1), 53-62.

Järvinen, M. J. & Lehto, M. U. (1993). The effects of early mobilisation and immobilisation on the healing process following muscle injuries. Sports Med (Auckland, N.Z.), 15 (2),


Kawada, S.; Harada, A. & Hashimoto, N. (2017). Impairment of cold injury-induced muscle regeneration in mice receiving a combination of bone fracture and alendronate treatment. PLoS One, 12 (7), e0181457.

Kobayashi, M.; Ota, S.; Terada, S.; Kawakami, Y. et al. (2016). The Combined Use of Losartan and Muscle-Derived Stem Cells Significantly Improves the Functional Recovery of Muscle in a Young Mouse Model of Contusion Injuries. Am J Sports Med, 44 (12), 3252-3261.

Lee, J. E.; Shah, V. K.; Lee, E. J.; Oh, M. S. et al. (2019). Melittin - A bee venom component - Enhances muscle regeneration factors expression in a mouse model of skeletal muscle contusion. J Pharmacol Sci, 140 (1), 26-32.

Luiz, L. M. F. & Ferreira, R. K. (2003). Experimental model: historic and conceptual revision. Acta Cirúrgica Brasileira [online]. 18 (spe), 01-03.

Martins, R. P.; Hartmann, D. D.; De Moraes, J. P.; Soares, FA. et al. (2016). Platelet-rich plasma reduces the oxidative damage determined by a skeletal muscle contusion in rats. Platelets, 27 (8), 784-790.

Matheus, J. P. C.; Oliveira, F. B., Gomide, L. B.; Milani, J. G. P. O.; Volpon, J. B. & Shimano, A. C. (2008). Efeitos do ultra-som terapêutico nas propriedades mecânicas do músculo esquelético após contusão. Rev Bras Fisioter, 12 (3), 241-7.

Murata, I.; Kawanishi, R.; Inoue, S.; Iwata, M. et al. (2019). A novel method to assess the severity and prognosis in crush syndrome by assessment of skin damage in hairless rats. Eur J Trauma Emerg Surg, 45 (6), 1087-1095.

Nuutila, K.; Sakthivel, D.; Kruse, C.; Tran, P. et al. (2017). Gene expression profiling of skeletal muscle after volumetric muscle loss. Wound Repair Regen, 25 (3), 408-413.

Patsalos, A.; Pap, A.; Varga, T.; Trencsenyi, G. et al. (2017). In situ macrophage phenotypic transition is affected by altered cellular composition prior to acute sterile muscle injury. J Physiol, 595 (17), 5815-5842.

Ramos, L.; Marcos, R. L.; Torres-Silva, R.; Pallota, R. C. et al. (2018). Characterization of Skeletal Muscle Strain Lesion Induced by Stretching in Rats: Effects of Laser Photobiomodulation. Photomed Laser Surg, 36 (9), 460-467.

Rana, S.; Sieck, G. C. & Mantilla, C. B. (2017). Diaphragm electromyographic activity following unilateral midcervical contusion injury in rats. J Neurophysiol, 117 (2), 545-555.

Settelmeier, S.; Schreiber, T.; Mäki, J.; Byts, N. et al. (2020). Prolyl hydroxylase domain 2 reduction enhances skeletal muscle tissue regeneration after soft tissue trauma in mice. PLoS One, 15 (5), e0233261.

Sloboda, D. D..; Brown, L. A. & Brooks, S. V. (2018). Myeloid Cell Responses to Contraction-induced Injury Differ in Muscles of Young and Old Mice. J Gerontol A Biol Sci Med Sci, 73 (12), 1581-1590.

Song, D. H.; Kim, M. H.; Lee, Y. T.; Lee, J. H. et al. (2018). Effect of high frequency electromagnetic wave stimulation on muscle injury in a rat model. Injury, 49 (6), 1032-1037.

Sun, J. H.; Zhu, X. Y.; Dong, T. N.; Zhang, X. H. et al. (2017). An "up, no change, or down" system: Time-dependent expression of mRNAs in contused skeletal muscle of rats used for wound age estimation. Forensic Sci Int, 272, 104-110.

Takhtfooladi, H. A. & Takhtfooladi, M. A. (2019). Effect of curcumin on lung injury induced by skeletal muscle ischemia/reperfusion in rats. Ulus Travma Acil Cerrahi Derg, 25 (1), 7-11.

The Oxford Dictionary and Thesaurus. (1996). 3 rd ed. New York: Oxford University Press. Model; 960.

Thirupathi, A.; Freitas, S.; Sorato, HR.; Pedroso, GS. et al. (2018). Modulatory effects of taurine on metabolic and oxidative stress parameters in a mice model of muscle overuse. Nutrition, 54, 158-164.

Wang, J.; Zhu, G.; Wang, X.; Cai, J. et al. (2020). An injectable liposome for sustained release of icariin to the treatment of acute blunt muscle injury. J Pharm Pharmacol, 72 (9), 1152-1164.

Wu, S. H..; Lu, I. C.; Tai, M. H.; Chai, C. Y. et al. (2020). Erythropoietin Alleviates Burn-induced Muscle Wasting. Int J Med Sci, 17 (1), 30.



How to Cite

SANTOS, P. W. da S. .; SANTOS, T. C. P. dos .; HAZIME, F. A. .; FILGUEIRAS, M. de C. . Experimental models for induction of muscle injury in rodents: literature review. Research, Society and Development, [S. l.], v. 11, n. 7, p. e35011730133, 2022. DOI: 10.33448/rsd-v11i7.30133. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30133. Acesso em: 29 feb. 2024.



Review Article