Development of electrochemical biosensor: Voltammetric analysis of lymphocytes and indication activation of complement system




Lymphocytes; Biosensor; Blood cells.


This work reports the development of an electrochemical biosensor after immobilization of the lymphocytes to detect the reaction between antibodies and specific HLA antigens present in the serum samples. A clean homemade gold electrode with voltammetric polycrystalline characteristics was used. Lymphocytes were immobilized and tested with positive and negative human serum and complements on the gold electrode. The experiments were carried out in a cell with three electrodes: working - gold, reference - Ag/AgCl/sat. KCl and auxiliary - platinum. The cyclic voltammetric analyses of immobilized lymphocytes on the gold surface presented anodic current equal to 1.78 μA at c.a. 0.50 V vs. Ag/AgCl/sat. KCl. The electrochemical responses of the serum (positive and negative) and complement do not show signs of oxidation or reduction in the potential range used. The electrodes with cells and positive serum showed the amplified current signal in the oxidation potential of the cells. The electrode was developed to verify the antigen antibody reaction, present lymphocyte cell and human serum samples. The electrode was qualitatively efficient when compared to the methods of flow cytometric analysis and complement dependent cytotoxicity, being able to be used with operational and economic advantages.

Author Biography

Ruan Sousa Bastos, Federal Institute of Education, Science and Technology of Maranhão; Research Group in Medicinal Chemistry and Biotechnology-QUIMEBIO

Graduado em Ciências Naturais/Química pela Universidade Federal do Maranhão - UFMA, Campus de Grajaú. Mestrando em Química Medicinal e Modelagem Molecular - UFPA. Participou do Programa Institucional de Bolsa de iniciação a Docência - PIBID e do Programa de Residência Pedagógica. Membro do Grupo de Pesquisa em Química Medicinal e Biotecnologia - QUIMEBIO e membro do Grupo de Pesquisa em Ciências Naturais e Biotecnologia - CIENATEC. Atua nas linhas de Biotecnologia e Química Quântica Computacional. E-mail:


Abbas, A. K., Lichtman, A. H., & Pillai, S. (2007). Effector mechanisms of cell-mediated immunity. Cellular and molecular immunology. Saunders Elsevier 6th edition Philadelphia, PA, 303-320.

Ahmed, M., Carrascosa, L. G., Sina, A. A. I., Zarate, E. M., Korbie, D., Ru, K. L., ... & Trau, M. (2017). Detection of aberrant protein phosphorylation in cancer using direct gold-protein affinity interactions. Biosensors and Bioelectronics, 91, 8-14.

Alheim, M., Paul, P. K., Hauzenberger, D. M., & Wikström, A. C. (2015). Improved flow cytometry based cytotoxicity and binding assay for clinical antibody HLA crossmatching. Human Immunology, 76(11), 849-857.

Bard, A. J., & Faulkner, L. R. (2001). Chapter 5. ELECTROCHEMICAL METHODS, Fundamentals and Applications, second ed., John Wiley & Sons, Inc, New York.

Biomarkers Definitions Working Group, Atkinson Jr, A. J., Colburn, W. A., DeGruttola, V. G., DeMets, D. L., Downing, G. J., ... & Zeger, S. L. (2001). Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clinical pharmacology & therapeutics, 69(3), 89-95.

Bona, C., Anteunis, A., Robineaux, R., & Halpern, B. (1972). Structure of the lymphocyte membrane. III. Chemical nature of the guinea-pig lymphocyte membrane macromolecules reacting with heterologous als. Clinical and Experimental Immunology, 12(3), 377.

Brotton, S. J., & Kaiser, R. I. (2013). Novel high-temperature and pressure-compatible ultrasonic levitator apparatus coupled to Raman and Fourier transform infrared spectrometers. Review of Scientific Instruments, 84(5), 055114.

Brunetti, A., Pomilla, F. R., Marcì, G., Garcia-Lopez, E. I., Fontananova, E., Palmisano, L., & Barbieri, G. (2019). CO2 reduction by C3N4-TiO2 Nafion photocatalytic membrane reactor as a promising environmental pathway to solar fuels. Applied Catalysis B: Environmental, 255, 117779.

Cai, X., Xing, X., Cai, J., Chen, Q., Wu, S., & Huang, F. (2010). Connection between biomechanics and cytoskeleton structure of lymphocyte and Jurkat cells: An AFM study. Micron, 41(3), 257-262.

Cheuquepán, W., Martínez-Olivares, J., Rodes, A., & Orts, J. M. (2018). Squaric acid adsorption and oxidation at gold and platinum electrodes. Journal of Electroanalytical Chemistry, 819, 178-186.

Demir, E., Yeğit, O., Erol, A., Akgül, S. U., Çalışkan, B., Bayraktar, A., ... & Sever, M. S. (2017, April). Relevance of Flow Cytometric Auto-Crossmatch to the Post-transplant Course of Kidney Transplant Recipients. In Transplantation Proceedings (Vol. 49, No. 3, pp. 477-480). Elsevier.

Han, L., Yan, B., Zhang, L., Wu, M., Wang, J., Huang, J., ... & Zeng, H. (2018). Tuning protein adsorption on charged polyelectrolyte brushes via salinity adjustment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 539, 37-45.

Hasanzadeh, M., Baghban, H. N., Shadjou, N., & Mokhtarzadeh, A. (2018). Ultrasensitive electrochemical immunosensing of tumor suppressor protein p53 in unprocessed human plasma and cell lysates using a novel nanocomposite based on poly-cysteine/graphene quantum dots/gold nanoparticle. International journal of biological macromolecules, 107, 1348-1363.

Kim, A. R., Park, T. J., Kim, M. S., Kim, I. H., Kim, K. S., Chung, K. H., & Ko, S. (2017). Functional fusion proteins and prevention of electrode fouling for a sensitive electrochemical immunosensor. Analytica chimica acta, 967, 70-77.

Koo, K. M., Carrascosa, L. G., Shiddiky, M. J., & Trau, M. (2016). Poly (A) extensions of miRNAs for amplification-free electrochemical detection on screen-printed gold electrodes. Analytical chemistry, 88(4), 2000-2005.

LAL, S. S. (2010). Hematological changes in Tinca tinca after exposure to lethal and sublethal doses of Mercury, Cadmium and Lead.

Lo, D. J., Kaplan, B., & Kirk, A. D. (2014). Biomarkers for kidney transplant rejection. Nature Reviews Nephrology, 10(4), 215-225.

Matysik, J., Schulten, E., Alia, A., Gast, P., Raap, J., Lugtenburg, J., ... & Groot, H. J. D. (2001). Photo-CIDNP 13C magic angle spinning NMR on bacterial reaction centres: exploring the electronic structure of the special pair and its surroundings.

McDonald, G. D., & Storrie-Lombardi, M. C. (2010). Biochemical constraints in a protobiotic earth devoid of basic amino acids: The “BAA (-) world”. Astrobiology, 10(10), 989-1000.

Moulton, S. E., Barisci, J. N., Bath, A., Stella, R., & Wallace, G. G. (2003). Investigation of protein adsorption and electrochemical behavior at a gold electrode. Journal of colloid and interface science, 261(2), 312-319.

Moura-Melo, S., Miranda-Castro, R., De-los-Santos-Álvarez, N., Miranda-Ordieres, A. J., dos Santos Junior, J. R., da Silva Fonseca, R. A., & Lobo-Castañón, M. J. (2017). A quantitative PCR-electrochemical genosensor test for the screening of biotech crops. Sensors, 17(4), 881.

Nankivell, B. J., & Alexander, S. I. (2010). Rejection of the kidney allograft. New England Journal of Medicine, 363(15), 1451-1462.

Park, J., Lin, H. Y., Assaker, J. P., Jeong, S., Huang, C. H., Kurdi, A., ... & Azzi, J. R. (2017). Integrated kidney exosome analysis for the detection of kidney transplant rejection. ACS nano, 11(11), 11041-11046.

PI, P. R. T. (1969). Significance or the positive crossmatch test in kidnetransplantation. New Engl J Med, 280, 735-9.

Picascia, A., Infante, T., & Napoli, C. (2012). Luminex and antibody detection in kidney transplantation. Clinical and experimental nephrology, 16(3), 373-381.

Roelen, D. L., Doxiadis, I. I., & Claas, F. H. (2012). Detection and clinical relevance of donor specific HLA antibodies: a matter of debate. Transplant International, 25(6), 604-610.

Sina, A. A. I., Howell, S., Carrascosa, L. G., Rauf, S., Shiddiky, M. J., & Trau, M. (2014). eMethylsorb: electrochemical quantification of DNA methylation at CpG resolution using DNA–gold affinity interactions. Chemical communications, 50(86), 13153-13156.

Solez, K., Colvin, R. B., Racusen, L. C., Haas, M., Sis, B., Mengel, M., ... & Valente, M. (2008). Banff 07 classification of renal allograft pathology: updates and future directions. American journal of transplantation, 8(4), 753-760.

Srinivas, T. R., & Meier-Kriesche, H. U. (2008). Minimizing immunosuppression, an alternative approach to reducing side effects: objectives and interim result. Clinical Journal of the American Society of Nephrology, 3(Supplement 2), S101-S116.

Steven, J. T., Golovko, V. B., Johannessen, B., & Marshall, A. T. (2016). Electrochemical stability of carbon-supported gold nanoparticles in acidic electrolyte during cyclic voltammetry. Electrochimica Acta, 187, 593-604.

Terasaki, P. I., & McCLELLAND, J. D. (1964). Microdroplet assay of human serum cytotoxins. Nature, 204(4962), 998-1000.

Trišović, N. P., Božić, B. D., Lović, J. D., Vitnik, V. D., Vitnik, Ž. J., Petrović, S. D., & Ivić, M. L. A. (2015). Еlеctrochemical characterization of phenytoin and its derivatives on bare gold electrode. Electrochimica Acta, 161, 378-387.

Wang, G., Zhou, Y., Huang, F. J., Tang, H. D., Xu, X. H., Liu, J. J., ... & Jia, W. (2014). Plasma metabolite profiles of Alzheimer’s disease and mild cognitive impairment. Journal of Proteome Research, 13(5), 2649-2658.

Wanunu, M., Vaskevich, A., & Rubinstein, I. (2004). Widely-applicable gold substrate for the study of ultrathin overlayers. Journal of the American Chemical Society, 126(17), 5569-5576.

Xu, X., Makaraviciute, A., Pettersson, J., Zhang, S. L., Nyholm, L., & Zhang, Z. (2019). Revisiting the factors influencing gold electrodes prepared using cyclic voltammetry. Sensors and Actuators B: Chemical, 283, 146-153.

Yadav, S., Carrascosa, L. G., Sina, A. A., Shiddiky, M. J., Hill, M. M., & Trau, M. (2016). Electrochemical detection of protein glycosylation using lectin and protein–gold affinity interactions. Analyst, 141(8), 2356-2361.




How to Cite

OLIVEIRA, T. P.; MELO, S. M.; MONTE, S. J. H. do; BASTOS, R. S.; PASSOS, I. N. G.; SILVA, A. S.; SANTOS JÚNIOR, J. R. dos. Development of electrochemical biosensor: Voltammetric analysis of lymphocytes and indication activation of complement system. Research, Society and Development, [S. l.], v. 11, n. 7, p. e59611730198, 2022. DOI: 10.33448/rsd-v11i7.30198. Disponível em: Acesso em: 6 jul. 2022.



Exact and Earth Sciences