Phospholipases A2 from ofidic venoms: Update on purification, biological characterization and biotechnological application




Snake Venoms; Phospholipases A2; Neurotoxicity; Toxicology; Health teaching.


Ophidism is responsible for about 1.8 to 2.7 million cases of poisoning every year, and understanding the biological mechanisms responsible for its neurotoxicity is essential for therapeutic management. Among the diversity of molecules that compose snake venom there are the phospholipase A2, an enzyme family responsible for the production of a range of pathological conditions, including myotoxicity, cardiotoxicity, and neurotoxicity. The present work, carried out through the methodology of integrative literature review, aims to identify and indicate the main advances in the last 10 years regarding the characterization and understanding of the neurotoxic action of phospholipases A2 originating from snake venom, in the field of toxicology.  The main progress identified corresponded to the understanding that the neurotoxic activity of B. bilineata smargadine is based on the action of PLA2 Bbil-TX, proof of the dependence of PhTX-II by calcium for its action, identification of the occurrence of the muscular neurotoxic action of BP-13 in the sarcolemma region, determination of the subunit of crotoxin acting as a regulator of the GLIC receptor, and identification of the selectivity of MiDCA1 by specific potassium channels. The advance in the understanding of this enzymatic group corresponds to part of the pathway necessary for the development of therapeutics targeting PLA2 and possible biotechnological applications of these biomolecules.


Camargo, T. M., de Roodt, A. R., da Cruz-Höfling, M. A., & Rodrigues-Simioni, L. (2011). The neuromuscular activity of Micrurus pyrrhocryptus venom and its neutralization by commercial and specific coral snake antivenoms. Journal of venom research, 2, 24–31.

Cavalcante, W. L. G., Noronha-Matos, J. B., Timóteo, M. A., Fontes, M. R. M., Gallacci, M., & Correia-de-Sá, P. (2017). Neuromuscular paralysis by the basic phospholipase A 2 subunit of crotoxin from Crotalus durissus terrificus snake venom needs its acid chaperone to concurrently inhibit acetylcholine release and produce muscle blockage. Toxicology and Applied Pharmacology, 334, 8–17.

de Carvalho, N. D., Garcia, R. C., Ferreira, A. K., Batista, D. R., Cassola, A. C., Maria, D., Lebrun, I., Carneiro, S. M., Afeche, S. C., Marcourakis, T., & Sandoval, M. R. (2014). Neurotoxicity of coral snake phospholipases A2 in cultured rat hippocampal neurons. Brain research, 1552, 1–16.

Dhananjaya, B. L., & Sivashankari, P. R. (2015). Snake venom derived molecules in tumor angiogenesis and its application in cancer therapy; an overview. Current topics in medicinal chemistry, 15(7), 649–657.

Ercole, F. F., Melo, L. S. de, & Alcoforado, C. L. G. C. (2014). Integrative review versus systematic review. Revista Mineira de Enfermagem,, 18(1), 9–12.

Floriano, R. S., Carregari, V. C., de Abreu, V. A., Kenzo-Kagawa, B., Ponce-Soto, L. A., da Cruz-Höfling, M. A., Hyslop, S., Marangoni, S., & Rodrigues-Simioni, L. (2013). Pharmacological study of a new Asp49 phospholipase A(2) (Bbil-TX) isolated from Bothriopsis bilineata smargadina (forest viper) venom in vertebrate neuromuscular preparations. Toxicon: official journal of the International Society on Toxinology, 69, 191–199.

Frangieh, J., Rima, M., Fajloun, Z., Henrion, D., Sabatier, J.-M., Legros, C., & Mattei, C. (2021). Snake venom components: Tools and cures to target cardiovascular diseases. Molecules, 26(8), 2223.

Fry, B. G., & Wüster, W. (2004). Assembling an arsenal: origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences. Molecular biology and evolution, 21(5), 870–883.

Gutiérrez, J. M., & Lomonte, B. (2013). Phospholipases A2: unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon : official journal of the International Society on Toxinology, 62, 27–39.

Hiu, J. J., & Yap, M. (2020). Cytotoxicity of snake venom enzymatic toxins: phospholipase A2 and l-amino acid oxidase. Biochemical Society transactions, 48(2), 719–731.

Huancahuire-Vega, S., Ponce-Soto, L. A., & Marangoni, S. (2014). PhTX-II a basic myotoxic phospholipase A₂ from Porthidium hyoprora snake venom, pharmacological characterization and amino acid sequence by mass spectrometry. Toxins, 6(11), 3077–3097.

Kumar, J. R., Basavarajappa, B. S., Vishwanath, B. S., & Gowda, T. V. (2015). Biochemical and pharmacological characterization of three toxic phospholipase A2s from Daboia russelii snake venom. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 168, 28–38.

Liang, Q., Huynh, T. M., Ng, Y. Z., Isbister, G. K., & Hodgson, W. C. (2021). In Vitro Neurotoxicity of Chinese Krait (Bungarus multicinctus) Venom and Neutralization by Antivenoms. Toxins, 13(1), 49.

Lomonte, B., Rey-Suárez, P., Fernández, J., Sasa, M., Pla, D., Vargas, N., Bénard-Valle, M., Sanz, L., Corrêa-Netto, C., Núñez, V., Alape-Girón, A., Alagón, A., Gutiérrez, J. M., & Calvete, J. J. (2016). Venoms of Micrurus coral snakes: Evolutionary trends in compositional patterns emerging from proteomic analyses. Toxicon: official journal of the International Society on Toxinology, 122, 7–25.

Marcon, F., & Nicholson, G. M. (2011). Identification of presynaptic neurotoxin complexes in the venoms of three Australian copperheads (Austrelaps spp.) and the efficacy of tiger snake antivenom to prevent or reverse neurotoxicity. Toxicon: official journal of the International Society on Toxinology, 58(5), 439–452.

Ostrowski, M., Porowinska, D., Prochnicki, T., Prevost, M., Raynal, B., Baron, B., Sauguet, L., Corringer, P. J., & Faure, G. (2016). Neurotoxic phospholipase A2 from rattlesnake as a new ligand and new regulator of prokaryotic receptor GLIC (proton-gated ion channel from G. violaceus). Toxicon: official journal of the International Society on Toxinology, 116, 63–71.

Pycroft, K., Fry, B. G., Isbister, G. K., Kuruppu, S., Lawrence, J., Ian Smith, A., & Hodgson, W. C. (2012). Toxinology of venoms from five Australian lesser known elapid snakes. Basic & Clinical Pharmacology & Toxicology, 111(4), 268–274.

Renjifo, C., Smith, E. N., Hodgson, W. C., Renjifo, J. M., Sanchez, A., Acosta, R., Maldonado, J. H., & Riveros, A. (2012). Neuromuscular activity of the venoms of the Colombian coral snakes Micrurus dissoleucus and Micrurus mipartitus: an evolutionary perspective. Toxicon: official journal of the International Society on Toxinology, 59(1), 132–142.

Resende, L. M., Almeida, J. R., Schezaro-Ramos, R., Collaço, R. C. O., Simioni, L. R., Ramírez, D., González, W., Soares, A. M., Calderon, L. A., Marangoni, S., & da Silva, S. L. (2017). Exploring and understanding the functional role, and biochemical and structural characteristics of an acidic phospholipase A2, AplTx-I, purified from Agkistrodon piscivorus leucostoma snake venom. Toxicon: Official Journal of the International Society on Toxinology, 127, 22–36.

Rusmili, M. R. A., Othman, I., Abidin, S. A. Z., Yusof, F. A., Ratanabanangkoon, K., Chanhome, L., Hodgson, W. C., & Chaisakul, J. (2019). Variations in neurotoxicity and proteome profile of Malayan krait (Bungarus candidus) venoms. PloS One, 14(12), e0227122.

Schütter, N., Barreto, Y. C., Vardanyan, V., Hornig, S., Hyslop, S., Marangoni, S., Rodrigues-Simioni, L., Pongs, O., & Dal Belo, C. A. (2019). Inhibition of Kv2.1 potassium channels by MiDCA1, A pre-synaptically active PLA2-type toxin from Micrurus dumerilii carinicauda coral snake venom. Toxins, 11(6), 335.

World Health Organization. (mai. 2017). Snakebite envenoming. Recuperado de maio de 2022, de

Sucasaca-Monzón, G., Randazzo-Moura, P., Rocha, T., Torres-Huaco, F. D., Vilca-Quispe, A., Ponce-Soto, L. A., Marangoni, S., da Cruz-Höfling, M. A., & Rodrigues-Simioni, L. (2015). Bp-13 PLA2: Purification and Neuromuscular Activity of a New Asp49 Toxin Isolated from Bothrops pauloensis Snake Venom. Biochemistry research international, 2015, 826059.

Tasoulis, T., & Isbister, G. K. (2017). A review and database of snake venom proteomes. Toxins, 9(9), 290.

Terra, A. L., Moreira-Dill, L. S., Simões-Silva, R., Monteiro, J. R., Cavalcante, W. L., Gallacci, M., Barros, N. B., Nicolete, R., Teles, C. B., Medeiros, P. S., Zanchi, F. B., Zuliani, J. P., Calderon, L. A., Stábeli, R. G., & Soares, A. M. (2015). Biological characterization of the Amazon coral Micrurus spixii snake venom: Isolation of a new neurotoxic phospholipase A2. Toxicon: official journal of the International Society on Toxinology, 103, 1–11.

Tsai, I. H., Wang, Y. M., & Hseu, M. J. (2011). Mutagenesis analyses explore residues responsible for the neurotoxic and anticoagulant activities of Trimucrotoxin, a pit-viper venom Asn6-phospholipase A2. Biochimie, 93(2), 277–285.

Vergara, I., Pedraza-Escalona, M., Paniagua, D., Restano-Cassulini, R., Zamudio, F., Batista, C. V., Possani, L. D., & Alagón, A. (2014). Eastern coral snake Micrurus fulvius venom toxicity in mice is mainly determined by neurotoxic phospholipases A2. Journal of proteomics, 105, 295–306.



How to Cite

BOMFIM, M. A.; SILVA, W. A. da .; CORREIA, J. M. . Phospholipases A2 from ofidic venoms: Update on purification, biological characterization and biotechnological application. Research, Society and Development, [S. l.], v. 11, n. 7, p. e50011730330, 2022. DOI: 10.33448/rsd-v11i7.30330. Disponível em: Acesso em: 6 jul. 2022.



Review Article