Estimation of water consumption of eucalyptus using images from orbital sensors
DOI:
https://doi.org/10.33448/rsd-v11i7.30362Keywords:
Remote sensing; Metric; Google Earth Engine; GIS; Eeflux.Abstract
The planting of Eucalyptus around the world has generated numerous discussions caused by the effects of its implementation and its environmental impacts caused in the ecosystem and water availability in the environment. Evapotranspiration (ET) is a primary parameter for most studies involving water resources, as it represents the main water loss in the hydrological cycle and presents a complex structure of interaction with the ecosystem, and is strongly influenced by the environment and human activity. Remote sensing aids in obtaining ET estimates over large areas and offers results with a high degree of confidence and speed. The objective of this work was to estimate the evapotranspiration of a reforested area (eucalyptus) and Brazilian savanna, in the city of São João do Paraiso/MG, using orbital images from the LANDSAT 8 satellite processed through the Mapping Evapotranspiration with Internalized Calibration (METRIC) algorithm in the Google Earth Engine platform, Earth Engine Evapotranspiration Flux EEFLUX. The data were processed and the average ET values for the areas were obtained. The eucalyptus plantation area (reforestation) obtained lower average evapotranspiration when compared to the and Brazilian savanna, area, however the unpaired Student's t-test was applied, and it was obtained that the averages are statistically equal in the evaluated period, it was observed higher ET values in the summer period being the variation of evapotranspiration related to the availability of radiation. The use of the METRIC algorithm, associated with the EEFLUX application, proved to be satisfactory for the study of evapotranspiration in watersheds, and may help to manage water resources more efficiently.
References
Alam, M. S., Lamb, D.W., & Rahman, M.M. (2018). A refined method for rapidly determining the relationship between canopy NDVI and the pasture evapotranspiration coefficient. Computers And Electronics In Agriculture. 147,12-17. http://dx.doi.org/10.1016/j.compag.2018.02.008
Allen, R. G et al. (2015). EEflux: A Landsat-based Evapotranspiration mapping tool on the Google Earth Engine. American Society of Agricultural and Biological Engineers. 1–11.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. Rome: FAO. 300 p. (FAO – Irrigation and Drainage Paper, 56).?
Allen, R.; Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) - Model. Journal of Irrigation and Drainage Engineering. 133 (04), 380-394.
Allen, R.G. et al. (2007a) Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. Journal Of Irrigation And Drainage Engineering.133(4), 380-394. http://dx.doi.org/10.1061/(asce)0733-9437(2007)133:4(380).
Anderson, M. C. et al. (2004). A Multiscale Remote Sensing Model for Disaggregating Regional Fluxes to Micrometeorological Scales. Journal Of Hydrometeorology. 5(2), 343-363. http://dx.doi.org/10.1175/1525-7541(2004)0052.0.co;2.
Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., & Holtslag, A. A. M.(1998). A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. Journal Hydrology. 212(1), 198-212.
Bosquilia, R. W. D. (2016). Modelagem espacial da evapotranspiração utilizando Modelo de Duas Fontes em ambiente SIG para florestas e cana-de-açúcar. Tese de Doutorado, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba. doi:10.11606/T.11.2016.tde-03102016-165340. Recuperado em 2022-05-14, de www.teses.usp.br
Cândido, B. M., Silva, M. L. N., Curi, N., & Batista, P. V. G. (2014). Erosão hídrica pós-plantio em florestas de eucalipto na bacia do rio Paraná, no leste do Mato Grosso do Sul. Revista Brasileira de Ciência do Solo. 38(5), 1565-1575.
Conceição, M., A. (2013). Ajuste do modelo de hargreaves para estimativa da evapotranspiração de referência no noroeste paulista. Revista Brasileira de Agricultura Irrigada. 7, 306-316.
Costa, J.O. et al. (2020). Spatial variability quantification of maize water consumption based on Google EEflux tool. Agricultural Water Management, 232, 1-8,. http://dx.doi.org/10.1016/j.agwat.2020.106037
Courault, D., Seguin, B., & Olioso, A. (2005). Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches. Irrigation And Drainage Systems. 19(3-4), 223-249. http://dx.doi.org/10.1007/s10795-005-5186-0.
Douna, V. et al. (2021). Towards a remote sensing data based evapotranspiration estimation in Northern Australia using a simple random forest approach. Journal Of Arid Environments. 191(11), 1-15, http://dx.doi.org/10.1016/j.jaridenv.2021.104513.
Drexler, J. Z. et al. (2004). A review of models and micrometeorological methods used to estimate wetland evapotranspiration. Hydrological Processes. 18(11), 2071-2101. http://dx.doi.org/10.1002/hyp.1462.
Garcia, L. G. et al. (2018). Hydrological effects of forest plantation clear-cut on water availability: consequences for downstream water users. Journal Of Hydrology: Regional Studies. 19, 17-24. http://dx.doi.org/10.1016/j.ejrh.2018.06.007.
IBÁ -Indústria Brasileira de Árvores. (2015). Relatório Anual Ibá 2015. 100.
IBGE- Instituto Brasileiro de Geografia e Estatísica. (2020). Produção da Extração Vegetal e da Silvicultura. Rio de Janeiro, 34, 1-8, ano base-2019.
Ishida, A. et al. (2006). Contrasting seasonal leaf habits of canopy trees between tropical dry-deciduous and evergreen forests in Thailand. Tree Physiology. 26(50), 643-656.
Leite, F. P. et al. (1999) Relações hídricas em povoamento de eucalipto com diferentes densidades populacionais. Revista Brasileira de Ciência do Solo. 23(1), 9-16.http://dx.doi.org/10.1590/s0100-06831999000100002.
LI, Zhao-Liang et al. A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data. Sensors, [S.L.], v. 9, n. 5, p. 3801-3853, 19 maio 2009. MDPI AG. http://dx.doi.org/10.3390/s90503801.
Lima, J. G. A., Sánchez, J. M., Piqueras, J. G., Espínola Sobrinho, J., Viana, P. C., & Alves, A. da. (2020). Evapotranspiration of sorghum from the energy balance by METRIC and STSEB. Revista Brasileira de Engenharia Agrícola E Ambiental, 24(1), 24–30. https://doi.org/10.1590/1807-1929/agriambi.v24n1p24-30
Madugundu, R., Al-Gaadi, K. A., Tola, E., Kayad, A. G., & Jha, C. S. (2017). Estimation of gross primary production of irrigated maize using Landsat-8 imagery and Eddy Covariance data. Saudi Journal of Biological Sciences, 24(2), 410–420. https://doi.org/10.1016/j.sjbs.2016.10.003
Martins, F. B., Gonzaga, G., Dos Santos, D. F., & Reboita, M. S. (2018). CLASSIFICAÇÃO CLIMÁTICA DE KÖPPEN E DE THORNTHWAITE PARA MINAS GERAIS: CENÁRIO ATUAL E PROJEÇÕES FUTURAS. Revista Brasileira de Climatologia, 1. https://doi.org/10.5380/abclima.v1i0.60896
Madugundu, R., Al-Gaadi, K. A., Tola, E., Kayad, A. G., & Jha, C. S. (2017). Estimation of gross primary production of irrigated maize using Landsat-8 imagery and Eddy Covariance data. Saudi Journal of Biological Sciences, 24(2), 410–420. https://doi.org/10.1016/j.sjbs.2016.10.003
Mendes, D., & Anderle, R. J. (2014). Análise da diversificação produtiva da silvicultura em propriedade rural. Repositorio.utfpr.edu.br. http://repositorio.utfpr.edu.br/jspui/handle/1/13504
Landsat 8 «Landsat Science. (2012). Retrieved from Nasa.gov website: https://landsat.gsfc.nasa.gov/landsat-8/
Nisa, Z., Khan, M. S., Govind, A., Marchetti, M., Lasserre, B., Magliulo, E., & Manco, A. (2021). Evaluation of SEBS, METRIC-EEFlux, and QWaterModel Actual Evapotranspiration for a Mediterranean Cropping System in Southern Italy. Agronomy, 11(2), 345. https://doi.org/10.3390/agronomy11020345
Pereira, A. R., Sediyama, G. C., & Villa Nova, N. A. (2013). Evapotranspiração. Campinas: Fundag.
Ramírez-Cuesta, J., Mirás-Avalos, J., Rubio-Asensio, J., & Intrigliolo, D. (2018). A Novel ArcGIS Toolbox for Estimating Crop Water Demands by Integrating the Dual Crop Coefficient Approach with Multi-Satellite Imagery. Water, 11(1), 38. https://doi.org/10.3390/w11010038
Rana, G., & Katerji, N. (2000). Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. European Journal of Agronomy, 13(2-3), 125–153. https://doi.org/10.1016/s1161-0301(00)00070-8
Salemi, L. F., Groppo, J. D., Trevisan, R., de Moraes, J. M., de Barros Ferraz, S. F., Villani, J. P., … Martinelli, L. A. (2013). Land-use change in the Atlantic rainforest region: Consequences for the hydrology of small catchments. Journal of Hydrology, 499, 100–109. https://doi.org/10.1016/j.jhydrol.2013.06.049
Santarosa, E.; Penteado Júnior, J. F.; Goulart, I. C. G 2014. Transferência de tecnologia florestal: cultivo de eucalipto em propriedades rurais: diversificação da produção e renda. Brasília: Embrapa, 138 p. ISBN 976-85-7035-400-6.
Sena, C. C. R. (2021). Uso do sensoriamento remoto para a estimativa da evapotranspiração atual e diagnóstico do manejo da irrigação da cultura do tomate industrial em Goiás. Repositorio.bc.ufg.br. Retrieved from http://repositorio.bc.ufg.br/tede/handle/tede/11361
Senay, G. B., Leake, S., Nagler, P. L., Artan, G., Dickinson, J., Cordova, J. T., & Glenn, E. P. (2011). Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods. Hydrological Processes, 25(26), 4037–4049. https://doi.org/10.1002/hyp.8379
de Oliveira Ferreira Silva, C., Lilla Manzione, R., & Albuquerque Filho, J. (2018). Large-Scale Spatial Modeling of Crop Coefficient and Biomass Production in Agroecosystems in Southeast Brazil. Horticulturae, 4(4), 44. https://doi.org/10.3390/horticulturae4040044
Silva, W. et al. “Índice de consumo e eficiência do uso da água em eucalipto, submetido a diferentes teores de água em convivência com braquiária”. Curitiba: Floresta (UFPR), v. 34, n. 3, p. 325-335, 2004.
Thorp, K. R., Marek, G. W., DeJonge, K. C., Evett, S. R., & Lascano, R. J. (2019). Novel methodology to evaluate and compare evapotranspiration algorithms in an agroecosystem model. Environmental Modelling & Software, 119, 214–227. https://doi.org/10.1016/j.envsoft.2019.06.007
Xue, J., Bali, K. M., Light, S., Hessels, T., & Kisekka, I. (2020). Evaluation of remote sensing-based evapotranspiration models against surface renewal in almonds, tomatoes and maize. Agricultural Water Management, 238, 106228. https://doi.org/10.1016/j.agwat.2020.106228
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Thalles Loiola Dias; Marcelo Rossi Vicente; Ronaldo Medeiros dos Santos; Vinicius Orlandi Barbosa Lima; Sâmara Magdalene Vieira Nunes
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.