Advances in ethanol autothermal reform for hydrogen gas production: a review

Authors

DOI:

https://doi.org/10.33448/rsd-v9i5.3070

Keywords:

Autothermal reform of ethanol; catalysts; reactor design; modeling and simulation.

Abstract

Concern about global warming and the high consumption of fossil fuels has led some countries to seek and invest in new energy sources that are efficient and less polluting. Among these alternatives, hydrogen fuel cells are a potential solution that can generate clean energy. Due to the industrial production of hydrogen being carried out by steam reforming of methane, which uses non-renewable raw material and is endothermic (resulting in high energy costs), the autothermal reform of ethanol has been presenting itself as an interesting technology, as it combines a renewable raw material with the reactions of reform (endothermic) and partial oxidation (exothermic), thus achieving energy self-sufficiency in the process of converting ethanol to hydrogen. Despite the various studies referring to the autothermal reform of ethanol, to our knowledge, no article has presented a detailed review of the main advances made in recent years for this process. Thus, this review presents the main results for the autothermal reform of ethanol, in recent years, in three main areas: Catalysts, Reactor Design and Modeling / Simulation. This work identified that the greatest advances have been made in the development of new catalysts and the design of reactors, while the modeling/simulation area still has few studies to efficiently describe the thermodynamics of the autothermal reform of ethanol.

References

Abokyi, E., Appiah-Konadu, P., Abokyi, F., & Oteng-Abayie, E. F. (2019). Industrial growth and emissions of CO2 in Ghana: the role of financial development and fossil fuel consumption. Energy Reports, 5, 1339-1353.

Afolabi, A. T. F., Li, C.-Z., and Kechagiopoulos, P. N. (2019). Microkinetic modelling and reaction pathway analysis of the steam reforming of ethanol over ni/sio2. International Journal of Hydrogen Energy, 44(41):22816–22830.

Almeida, S. C. A. d. (2010). Simulação da reforma autotérmica do etanol para produção de hidrogênio. VI Congresso Nacional de Engenharia Mecânica.

Ballesteros, M. A., Daza, M. A., Valdés, J. P., Ratkovich, N., and Reyes, L. H. (2019). Applying pbl methodologies to the chemical engineering courses: Unit operations and modeling and simulation, using a joint course project. Education for Chemical Engineers.

Baruah, R., Dixit, M., Basarkar, P., Parikh, D., and Bhargav, A. (2015). Advances in ethanol autothermal reforming. Renewable and Sustainable Energy Reviews, 51:1345–1353.

Basile, A., Gallucci, F., Iulianelli, A., Tereschenko, G., Ermilova, M., and Orekhova, N. (2008). Ti–Ni–Pd dense membranes—the effect of the gas mixtures on the hydrogen permeation. Journal of Membrane Science, 310(1-2):44–50.

Brito, J. Q., Dias, F. d. S., Cunha, S. D., Ramos, L. P., and Teixeira, L. S. (2019). Multiple response optimization of alkaline pretreatment of sisal fiber (agave sisalana) assisted by ultrasound. Biotechnology progress, page e2802.

Cai, W., Wang, F., Zhan, E., Van Veen, A., Mirodatos, C., and Shen, W. (2008). Hydrogen production from ethanol over ir/ceo2 catalysts: a comparative study of steam reforming, partial oxidation and oxidative steam reforming. Journal of Catalysis, 257(1):96–107.

Chen, H., Yu, H., Peng, F., Yang, G., Wang, H., Yang, J., and Tang, Y. (2010). Autothermal reforming of ethanol for hydrogen production over perovskite LaNiO3. Chemical engineering journal, 160(1):333–339.

Chen, H., Yu, H., Tang, Y., Pan, M., Yang, G., Peng, F., Wang, H., and Yang, J. (2009). Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides. Journal of Natural Gas Chemistry, 18(2):191–198.

Cormos, C.-C. (2014). Renewable hydrogen production concepts from bioethanol reforming with carbon capture. International Journal of Hydrogen Energy, 39(11):5597–5606.

da Silva, A. M., da Costa, L. O., Souza, K. R., Mattos, L. V., and Noronha, F. B. (2010). The effect of space time on Co/CeO2 catalyst deactivation during oxidative steam reforming of ethanol. Catalysis Communications, 11(8):736–740.

de Lima, S. M., da Silva, A. M., da Costa, L. O., Assaf, J. M., Mattos, L. V., Sarkari, R., Venugopal, A., and Noronha, F. B. (2012). Hydrogen production through oxidative steam reforming of ethanol over Ni-based catalysts derived from La1- xCexNiO3 perovskite-type oxides. Applied Catalysis B: Environmental, 121:1–9.

Divins, N. J., López, E., Rodríguez, A., Vega, D., and Llorca, J. (2013). Bio-ethanol steam reforming and autothermal reforming in 3-µm channels coated with rhpd/CeO2 for hydrogen generation. Chemical Engineering and Processing: Process Intensification, 64:31–37.

Dorf, R. C., Bishop, R. H., Canto, S. D., Canto, R. D., and Dormido, S. (2005). Sistemas de control moderno. Pearson Prentice Hall.

Đozić, D. J., & Urošević, B. D. G. (2019). Application of artificial neural networks for testing long-term energy policy targets. Energy, 174, 488-496.

Elbadawi, A. H., Ge, L., Zhang, J., Zhuang, L., Liu, S., Tan, X., Wang, S., and Zhu, Z. (2019). Partial oxidation of methane to syngas in catalytic membrane reactor: Role of catalyst oxygen vacancies. Chemical Engineering Journal, page 123739.

FAHIM, M. A., AL-SAHHAF, T. A., and ELKILANI, A. S. (2012). Introduçãoo ao refino de petróleo. Rio de Janeiro: Editora Campus.

Fischer, C. D. and Iribarren, O. A. (2017). Oxygen integration of autothermal reforming of ethanol with oxygen production, through ion transport membranes in counter current configuration. Computers & Chemical Engineering, 99:245–254.

Fischer, G., Shah, M., N. Tubiello, F., & Van Velhuizen, H. (2005). Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2067-2083.

Furtado, A. C., Alonso, C. G., Cantao, M. P., and Fernandes-Machado, N. R. C. (2011). Support influence on Ni–Cu catalysts behavior under ethanol oxidative reforming reaction. International Journal of Hydrogen Energy, 36(16):9653–9662.

Gallucci, F., Annaland, M. V. S., and Kuipers, J. (2010). Pure hydrogen production via autothermal reforming of ethanol in a fluidized bed membrane reactor: a simulation study. International Journal of Hydrogen Energy, 35(4):1659–1668.

Giwa, A. G. O. (2013). Application of aspen plus to hydrogen production from alcohols by steam reforming: Effects of reactor temperature. International Journal of Engineering, 2(8).

Graschinsky, C., Giunta, P., Amadeo, N., and Laborde, M. (2012). Thermodynamicanalysis of hydrogen production by autothermal reforming of ethanol. International Journal of Hydrogen Energy, 37(13):10118–10124.

Greluk, M., Rybak, P., S lowik, G., Rotko, M., and Machocki, A. (2015). Comparativestudy on steam and oxidative steam reforming of ethanol over 2KCO/ZrO2 catalyst. Catalysis Today, 242:50–59.

Hartmann, M., Maier, L., Minh, H., and Deutschmann, O. (2010). Catalytic partial oxidation of iso-octane over rhodium catalysts: An experimental, modeling, and simulation study. Combustion and Flame, 157(9):1771–1782.

Herbert, G. J. and Krishnan, A. U. (2016). Quantifying environmental performance of biomass energy. Renewable and Sustainable Energy Reviews, 59:292–308.

Holladay, J. D., Hu, J., King, D. L., and Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis today, 139(4):244–260.

Huang, L., Xie, J., Chen, R., Chu, D., and Hsu, A. T. (2010). Nanorod alumina-supported Ni–Zr–Fe/Al2O3 catalysts for hydrogen production in auto-thermal reforming of ethanol. Materials Research Bulletin, 45(1):92–96.

Hung, C.-C., Chen, S.-L., Liao, Y.-K., Chen, C.-H., and Wang, J.-H. (2012). Oxidative steam reforming of ethanol for hydrogen production on M/Al2O3. International Journal of Hydrogen Energy, 37(6):4955–4966.

Iulianelli, A. and Basile, A. (2019). Advances on inorganic membrane reactors for production of hydrogen. Fuel Cells and Hydrogen Production: A Volume in the Encyclopedia of Sustainability Science and Technology, Second Edition, pages 935–945.

Iulianelli, A., Dalena, F., & Basile, A. (2019). Steam Reforming, Preferential Oxidation, and Autothermal Reforming of Ethanol for Hydrogen Production in Membrane Reactors. In Ethanol (pp. 193-213). Elsevier.

Iulianelli, A., Ribeirinha, P., Mendes, A., and Basile, A. (2014). Methanol steam reforming for hydrogen generation via conventional and membrane reactors: a review. Renewable and Sustainable Energy Reviews, 29:355–368.

Jin, Y., Rui, Z., Tian, Y., Lin, Y. S., & Li, Y. (2016). Autothermal reforming of ethanol in dense oxygen permeation membrane reactor. Catalysis Today, 264, 214-220.

Jin, Y., Rui, Z., Tian, Y., Lin, Y., and Li, Y. (2010). Sequential simulation of dense oxygen permeation membrane reactor for hydrogen production from oxidative steam reforming of ethanol with aspen plus. International journal of hydrogen energy, 35(13):6691–6698.

Lin, W.-H., Liu, Y.-C., and Chang, H.-F. (2010). Autothermal reforming of ethanol in a Pd–Ag/Ni composite membrane reactor. International Journal of Hydrogen Energy, 35(23):12961–12969.

Liu, Y., Lin, R., Man, Y., and Ren, J. (2019). Recent developments of hydrogen production from sewage sludge by biological and thermochemical process. International Journal of Hydrogen Energy. Accepted manuscript.

Martín, M. M. (2014). Introduction to software for chemical engineers. CRC Press.

Martinelli, M., Watson, C. D., and Jacobs, G. (2019). Sodium doping of Pt/M-ZrO2 promotes c–c scission and decarboxylation during ethanol steam reforming. International Journal of Hydrogen Energy.

Muritala, I. K., Guban, D., Roeb, M., and Sattler, C. (2019). High temperature production of hydrogen: Assessment of non-renewable resources technologies and emerging trends. International Journal of Hydrogen Energy.

Nahar, G. and Dupont, V. (2014). Hydrogen production from simple alkanes and oxygenated hydrocarbons over ceria–zirconia supported catalysts. Renewable and Sustainable Energy Reviews, 32:777–796.

Nourbakhsh, H., Shahrouzi, J. R., Ebrahimi, H., Zamaniyan, A., and Nasr, M. R. J. (2019). Experimental and numerical study of syngas production during premixed and ultra-rich partial oxidation of methane in a porous reactor. International Journal of Hydrogen Energy, 44(60):31757–31771.

Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M., & Fischer, G. (2004). Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global environmental change, 14(1), 53-67. processing. Elsevier.

Rabenstein, G. and Hacker, V. (2008). Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidation and combined auto-thermal reforming: A thermodynamic analysis. Journal of Power Sources, 185(2):1293–1304.

Sáez-Martínez, F. J., Lefebvre, G., Hernández, J. J., and Clark, J. H. (2016). Drivers of sustainable cleaner production and sustainable energy options. Journal of cleaner production, 138:1–7.

Santucci, A., Annesini, M. C., Borgognoni, F., Marrelli, L., Rega, M., and Tosti, S. (2011). Oxidative steam reforming of ethanol over a Pt/Al2O3 catalyst in a Pd-based membrane reactor. International Journal of Hydrogen Energy, 36(2):1503–1511.

Shekhawat, D., Spivey, J. J., and Berry, D. A. (2011). Fuel cells: technologies for fuel

Sinigaglia, T., Freitag, T. E., Kreimeier, F., and Martins, M. E. S. (2019). Use of patentsas a tool to map the technological development involving the hydrogen economy. World Patent Information, 56:1–8.

Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., ... & Masera, O. (2014). Agriculture, forestry and other land use (AFOLU). In Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Song, C. (2002). Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century. Catalysis today, 77(1-2), 17-49.

Tosti, S., Zerbo, M., Basile, A., Calabr`o, V., Borgognoni, F., and Santucci, A. (2013). Pd-based membrane reactors for producing ultra-pure hydrogen: oxidative reforming of bio-ethanol. International Journal of Hydrogen Energy, 38(1):701–707.

Vita, A., Pino, L., Italiano, C., and Palella, A. (2019). Steam reforming, partial oxidation, and autothermal reforming of ethanol for hydrogen production in conventional reactors. In Ethanol, pages 159–191. Elsevier.

VLĂDAN, S. I., Isopencu, G., Jinescu, C., & MAREŞ, M. A. (2011). Process simulation to obtain a synthesis gas with high concentration of hydrogen. Gas, 5, 7.

Wang, C.-H., Ho, K.-F., Chiou, J. Y., Lee, C.-L., Yang, S.-Y., Yeh, C.-T., and Wang, C.-B. (2011). Oxidative steam reforming of ethanol over PtRu/ZrO2 catalysts modified with sodium and magnesium. Catalysis Communications, 12(10):854–858.

Xuan, J., Leung, M. K., Leung, D. Y., and Ni, M. (2009). A review of biomass-derived fuel processors for fuel cell systems. Renewable and Sustainable Energy Reviews, 13(6-7):1301–1313.

Xue, Z., Shen, Y., Li, P., Pan, Y., Li, J., Feng, Z., Zhang, Y., Zeng, Y., Liu, Y., and Zhu, S. (2018). Promoting effects of lanthanum oxide on the NiO/CeO2 catalyst for hydrogen production by autothermal reforming of ethanol. Catalysis Communications, 108:12–16.

Yamazaki, Y., Maruko, S., and Komori, S. (2011). Oxidative autothermal reformer and oxidative autothermal reforming method using the same. US Patent 7,981,372.

Yun, S., Lim, H., and Oyama, S. T. (2012). Experimental and kinetic studies of the ethanol steam reforming reaction equipped with ultrathin pd and Pd–Cu membranes for improved conversion and hydrogen yield. Journal of membrane science, 409:222–231.

Zhou, Y., Chen, X., Tan, X., Liu, C., Zhang, S., Yang, F., ... & Huang, H. (2018). Mechanism of CO2 Emission Reduction by Global Energy Interconnection. Global Energy Interconnection, 1(4), 409-419.

Downloads

Published

31/03/2020

How to Cite

BRITO, M. L.; FERREIRA JÚNIOR, J. M.; SANTOS, L. C. L. dos; SIMONELLI, G. Advances in ethanol autothermal reform for hydrogen gas production: a review. Research, Society and Development, [S. l.], v. 9, n. 5, p. e126953070, 2020. DOI: 10.33448/rsd-v9i5.3070. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/3070. Acesso em: 25 apr. 2024.

Issue

Section

Engineerings