Avanços na reforma autotérmica do etanol para produção de gás hidrogênio: uma revisão
DOI:
https://doi.org/10.33448/rsd-v9i5.3070Palavras-chave:
Reforma autotérmica de etanol; catalisadores; projeto de reatores; modelagem e simulação.Resumo
A preocupação com o aquecimento global e o alto consumo de combustíveis fósseis levou alguns países a buscar e investir em novas fontes de energia que sejam eficientes e menos poluentes. Entre essas alternativas, as células a combustível de hidrogênio são uma solução potencial que pode gerar energia limpa. Devido a produção industrial de hidrogênio ser realizada pela reforma a vapor do metano, que utiliza matéria-prima não renovável e é endotérmica (resultando em altos custos de energia), a reforma autotérmica do etanol vem se apresentando como uma tecnologia interessante, pois combina uma matéria-prima renovável com as reações de reforma (endotérmica) e oxidação parcial (exotérmica), conseguindo assim a auto-suficiência energética no processo de conversão de etanol em hidrogênio. Apesar dos vários estudos referentes a reforma autotérmica do etanol, para nosso conhecimento nenhum artigo apresentou uma revisão detalhada dos principais avanços realizados nos últimos anos para esse processo. Assim, esta revisão apresenta os principais resultados para a reforma autotérmica do etanol, nos últimos anos, em três áreas principais: Catalisadores, Projeto de Reatores e Modelagem / Simulação. Este trabalho identificou que os maiores avanços foram feitos no desenvolvimento de novos catalisadores e no projeto de reatores, enquanto a área de modelagem/simulação ainda possui poucos estudos para descrever com eficiência a termodinâmica da reforma autotérmica do etanol.
Referências
Abokyi, E., Appiah-Konadu, P., Abokyi, F., & Oteng-Abayie, E. F. (2019). Industrial growth and emissions of CO2 in Ghana: the role of financial development and fossil fuel consumption. Energy Reports, 5, 1339-1353.
Afolabi, A. T. F., Li, C.-Z., and Kechagiopoulos, P. N. (2019). Microkinetic modelling and reaction pathway analysis of the steam reforming of ethanol over ni/sio2. International Journal of Hydrogen Energy, 44(41):22816–22830.
Almeida, S. C. A. d. (2010). Simulação da reforma autotérmica do etanol para produção de hidrogênio. VI Congresso Nacional de Engenharia Mecânica.
Ballesteros, M. A., Daza, M. A., Valdés, J. P., Ratkovich, N., and Reyes, L. H. (2019). Applying pbl methodologies to the chemical engineering courses: Unit operations and modeling and simulation, using a joint course project. Education for Chemical Engineers.
Baruah, R., Dixit, M., Basarkar, P., Parikh, D., and Bhargav, A. (2015). Advances in ethanol autothermal reforming. Renewable and Sustainable Energy Reviews, 51:1345–1353.
Basile, A., Gallucci, F., Iulianelli, A., Tereschenko, G., Ermilova, M., and Orekhova, N. (2008). Ti–Ni–Pd dense membranes—the effect of the gas mixtures on the hydrogen permeation. Journal of Membrane Science, 310(1-2):44–50.
Brito, J. Q., Dias, F. d. S., Cunha, S. D., Ramos, L. P., and Teixeira, L. S. (2019). Multiple response optimization of alkaline pretreatment of sisal fiber (agave sisalana) assisted by ultrasound. Biotechnology progress, page e2802.
Cai, W., Wang, F., Zhan, E., Van Veen, A., Mirodatos, C., and Shen, W. (2008). Hydrogen production from ethanol over ir/ceo2 catalysts: a comparative study of steam reforming, partial oxidation and oxidative steam reforming. Journal of Catalysis, 257(1):96–107.
Chen, H., Yu, H., Peng, F., Yang, G., Wang, H., Yang, J., and Tang, Y. (2010). Autothermal reforming of ethanol for hydrogen production over perovskite LaNiO3. Chemical engineering journal, 160(1):333–339.
Chen, H., Yu, H., Tang, Y., Pan, M., Yang, G., Peng, F., Wang, H., and Yang, J. (2009). Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides. Journal of Natural Gas Chemistry, 18(2):191–198.
Cormos, C.-C. (2014). Renewable hydrogen production concepts from bioethanol reforming with carbon capture. International Journal of Hydrogen Energy, 39(11):5597–5606.
da Silva, A. M., da Costa, L. O., Souza, K. R., Mattos, L. V., and Noronha, F. B. (2010). The effect of space time on Co/CeO2 catalyst deactivation during oxidative steam reforming of ethanol. Catalysis Communications, 11(8):736–740.
de Lima, S. M., da Silva, A. M., da Costa, L. O., Assaf, J. M., Mattos, L. V., Sarkari, R., Venugopal, A., and Noronha, F. B. (2012). Hydrogen production through oxidative steam reforming of ethanol over Ni-based catalysts derived from La1- xCexNiO3 perovskite-type oxides. Applied Catalysis B: Environmental, 121:1–9.
Divins, N. J., López, E., Rodríguez, A., Vega, D., and Llorca, J. (2013). Bio-ethanol steam reforming and autothermal reforming in 3-µm channels coated with rhpd/CeO2 for hydrogen generation. Chemical Engineering and Processing: Process Intensification, 64:31–37.
Dorf, R. C., Bishop, R. H., Canto, S. D., Canto, R. D., and Dormido, S. (2005). Sistemas de control moderno. Pearson Prentice Hall.
Đozić, D. J., & Urošević, B. D. G. (2019). Application of artificial neural networks for testing long-term energy policy targets. Energy, 174, 488-496.
Elbadawi, A. H., Ge, L., Zhang, J., Zhuang, L., Liu, S., Tan, X., Wang, S., and Zhu, Z. (2019). Partial oxidation of methane to syngas in catalytic membrane reactor: Role of catalyst oxygen vacancies. Chemical Engineering Journal, page 123739.
FAHIM, M. A., AL-SAHHAF, T. A., and ELKILANI, A. S. (2012). Introduçãoo ao refino de petróleo. Rio de Janeiro: Editora Campus.
Fischer, C. D. and Iribarren, O. A. (2017). Oxygen integration of autothermal reforming of ethanol with oxygen production, through ion transport membranes in counter current configuration. Computers & Chemical Engineering, 99:245–254.
Fischer, G., Shah, M., N. Tubiello, F., & Van Velhuizen, H. (2005). Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2067-2083.
Furtado, A. C., Alonso, C. G., Cantao, M. P., and Fernandes-Machado, N. R. C. (2011). Support influence on Ni–Cu catalysts behavior under ethanol oxidative reforming reaction. International Journal of Hydrogen Energy, 36(16):9653–9662.
Gallucci, F., Annaland, M. V. S., and Kuipers, J. (2010). Pure hydrogen production via autothermal reforming of ethanol in a fluidized bed membrane reactor: a simulation study. International Journal of Hydrogen Energy, 35(4):1659–1668.
Giwa, A. G. O. (2013). Application of aspen plus to hydrogen production from alcohols by steam reforming: Effects of reactor temperature. International Journal of Engineering, 2(8).
Graschinsky, C., Giunta, P., Amadeo, N., and Laborde, M. (2012). Thermodynamicanalysis of hydrogen production by autothermal reforming of ethanol. International Journal of Hydrogen Energy, 37(13):10118–10124.
Greluk, M., Rybak, P., S lowik, G., Rotko, M., and Machocki, A. (2015). Comparativestudy on steam and oxidative steam reforming of ethanol over 2KCO/ZrO2 catalyst. Catalysis Today, 242:50–59.
Hartmann, M., Maier, L., Minh, H., and Deutschmann, O. (2010). Catalytic partial oxidation of iso-octane over rhodium catalysts: An experimental, modeling, and simulation study. Combustion and Flame, 157(9):1771–1782.
Herbert, G. J. and Krishnan, A. U. (2016). Quantifying environmental performance of biomass energy. Renewable and Sustainable Energy Reviews, 59:292–308.
Holladay, J. D., Hu, J., King, D. L., and Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis today, 139(4):244–260.
Huang, L., Xie, J., Chen, R., Chu, D., and Hsu, A. T. (2010). Nanorod alumina-supported Ni–Zr–Fe/Al2O3 catalysts for hydrogen production in auto-thermal reforming of ethanol. Materials Research Bulletin, 45(1):92–96.
Hung, C.-C., Chen, S.-L., Liao, Y.-K., Chen, C.-H., and Wang, J.-H. (2012). Oxidative steam reforming of ethanol for hydrogen production on M/Al2O3. International Journal of Hydrogen Energy, 37(6):4955–4966.
Iulianelli, A. and Basile, A. (2019). Advances on inorganic membrane reactors for production of hydrogen. Fuel Cells and Hydrogen Production: A Volume in the Encyclopedia of Sustainability Science and Technology, Second Edition, pages 935–945.
Iulianelli, A., Dalena, F., & Basile, A. (2019). Steam Reforming, Preferential Oxidation, and Autothermal Reforming of Ethanol for Hydrogen Production in Membrane Reactors. In Ethanol (pp. 193-213). Elsevier.
Iulianelli, A., Ribeirinha, P., Mendes, A., and Basile, A. (2014). Methanol steam reforming for hydrogen generation via conventional and membrane reactors: a review. Renewable and Sustainable Energy Reviews, 29:355–368.
Jin, Y., Rui, Z., Tian, Y., Lin, Y. S., & Li, Y. (2016). Autothermal reforming of ethanol in dense oxygen permeation membrane reactor. Catalysis Today, 264, 214-220.
Jin, Y., Rui, Z., Tian, Y., Lin, Y., and Li, Y. (2010). Sequential simulation of dense oxygen permeation membrane reactor for hydrogen production from oxidative steam reforming of ethanol with aspen plus. International journal of hydrogen energy, 35(13):6691–6698.
Lin, W.-H., Liu, Y.-C., and Chang, H.-F. (2010). Autothermal reforming of ethanol in a Pd–Ag/Ni composite membrane reactor. International Journal of Hydrogen Energy, 35(23):12961–12969.
Liu, Y., Lin, R., Man, Y., and Ren, J. (2019). Recent developments of hydrogen production from sewage sludge by biological and thermochemical process. International Journal of Hydrogen Energy. Accepted manuscript.
Martín, M. M. (2014). Introduction to software for chemical engineers. CRC Press.
Martinelli, M., Watson, C. D., and Jacobs, G. (2019). Sodium doping of Pt/M-ZrO2 promotes c–c scission and decarboxylation during ethanol steam reforming. International Journal of Hydrogen Energy.
Muritala, I. K., Guban, D., Roeb, M., and Sattler, C. (2019). High temperature production of hydrogen: Assessment of non-renewable resources technologies and emerging trends. International Journal of Hydrogen Energy.
Nahar, G. and Dupont, V. (2014). Hydrogen production from simple alkanes and oxygenated hydrocarbons over ceria–zirconia supported catalysts. Renewable and Sustainable Energy Reviews, 32:777–796.
Nourbakhsh, H., Shahrouzi, J. R., Ebrahimi, H., Zamaniyan, A., and Nasr, M. R. J. (2019). Experimental and numerical study of syngas production during premixed and ultra-rich partial oxidation of methane in a porous reactor. International Journal of Hydrogen Energy, 44(60):31757–31771.
Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M., & Fischer, G. (2004). Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global environmental change, 14(1), 53-67. processing. Elsevier.
Rabenstein, G. and Hacker, V. (2008). Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidation and combined auto-thermal reforming: A thermodynamic analysis. Journal of Power Sources, 185(2):1293–1304.
Sáez-Martínez, F. J., Lefebvre, G., Hernández, J. J., and Clark, J. H. (2016). Drivers of sustainable cleaner production and sustainable energy options. Journal of cleaner production, 138:1–7.
Santucci, A., Annesini, M. C., Borgognoni, F., Marrelli, L., Rega, M., and Tosti, S. (2011). Oxidative steam reforming of ethanol over a Pt/Al2O3 catalyst in a Pd-based membrane reactor. International Journal of Hydrogen Energy, 36(2):1503–1511.
Shekhawat, D., Spivey, J. J., and Berry, D. A. (2011). Fuel cells: technologies for fuel
Sinigaglia, T., Freitag, T. E., Kreimeier, F., and Martins, M. E. S. (2019). Use of patentsas a tool to map the technological development involving the hydrogen economy. World Patent Information, 56:1–8.
Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., ... & Masera, O. (2014). Agriculture, forestry and other land use (AFOLU). In Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Song, C. (2002). Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century. Catalysis today, 77(1-2), 17-49.
Tosti, S., Zerbo, M., Basile, A., Calabr`o, V., Borgognoni, F., and Santucci, A. (2013). Pd-based membrane reactors for producing ultra-pure hydrogen: oxidative reforming of bio-ethanol. International Journal of Hydrogen Energy, 38(1):701–707.
Vita, A., Pino, L., Italiano, C., and Palella, A. (2019). Steam reforming, partial oxidation, and autothermal reforming of ethanol for hydrogen production in conventional reactors. In Ethanol, pages 159–191. Elsevier.
VLĂDAN, S. I., Isopencu, G., Jinescu, C., & MAREŞ, M. A. (2011). Process simulation to obtain a synthesis gas with high concentration of hydrogen. Gas, 5, 7.
Wang, C.-H., Ho, K.-F., Chiou, J. Y., Lee, C.-L., Yang, S.-Y., Yeh, C.-T., and Wang, C.-B. (2011). Oxidative steam reforming of ethanol over PtRu/ZrO2 catalysts modified with sodium and magnesium. Catalysis Communications, 12(10):854–858.
Xuan, J., Leung, M. K., Leung, D. Y., and Ni, M. (2009). A review of biomass-derived fuel processors for fuel cell systems. Renewable and Sustainable Energy Reviews, 13(6-7):1301–1313.
Xue, Z., Shen, Y., Li, P., Pan, Y., Li, J., Feng, Z., Zhang, Y., Zeng, Y., Liu, Y., and Zhu, S. (2018). Promoting effects of lanthanum oxide on the NiO/CeO2 catalyst for hydrogen production by autothermal reforming of ethanol. Catalysis Communications, 108:12–16.
Yamazaki, Y., Maruko, S., and Komori, S. (2011). Oxidative autothermal reformer and oxidative autothermal reforming method using the same. US Patent 7,981,372.
Yun, S., Lim, H., and Oyama, S. T. (2012). Experimental and kinetic studies of the ethanol steam reforming reaction equipped with ultrathin pd and Pd–Cu membranes for improved conversion and hydrogen yield. Journal of membrane science, 409:222–231.
Zhou, Y., Chen, X., Tan, X., Liu, C., Zhang, S., Yang, F., ... & Huang, H. (2018). Mechanism of CO2 Emission Reduction by Global Energy Interconnection. Global Energy Interconnection, 1(4), 409-419.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.