Thermal comfort in subnormal agglomerates in the city of São Luís - Maranhão
DOI:
https://doi.org/10.33448/rsd-v11i8.31127Keywords:
Thermal Comfort; Degree-Days; Subnormal Clusters; Remote sensing.Abstract
This research aimed to evaluate human thermal comfort in two informal settlements in the city of São Luís - Maranhão in 2020, a period characterized by measures of isolation and physical distancing. To measure the thermal comfort zones of the local inhabitants, the hourly method of degrees-day was used through the equations of DeDear and Brager and Humphreys, and the Normalized Difference Vegetation Index (NDVI) and the Terrestrial Surface Temperature (TST), obtained by through orbital imaging. The results of these equations indicate that there was no need for cooling on any day of the year analyzed. For most of the period, the days were characterized by a comfortable thermal zone, with emphasis on some days with the need to increase the air temperature to improve the thermal sensation of comfort in the urban area of São Luís. However, the results of the spatial distribution of the TST show high temperatures close to 30°C (degrees Celsius) in areas of urban densification, confirmed by the mapping of land use and land cover in the region, obtained through the NDVI. These high values are due to the local changes that have taken place with the use of building materials that absorb much of the radiant energy and heat up residential environments, causing uncomfortable thermal sensations. In these areas it is necessary to adopt measures of thermal attenuation so that the environment becomes more comfortable.
References
Aires, A., Caroline, L., Correia, P. H., Panet, R. & Andréas, P. (2015). Miséria e Maré: Estudo sobre as palafitas na Comunidade da Portelinha. Revista do CEDS. Periódico do Centro de Estudos em Desenvolvimento Sustentável da UNDB. 3(1). http://www.undb.edu.br/ceds/revistadoceds.
Allen R, Bastiaanssen W, Waters R, Tasumi M. & Trezza, R. (2002). Surface energy balance algorithms for land (SEBAL), Idaho implementation – Advanced Training and User’s Manual 2002, version 1.0, 97p.
Azevedo, J. A., Chapman, L. & Muller, C. L. (2015). Critique and suggested modifications of the degree days methodology to enable long-term electricity consumption assessments: a case study in Birmingham, UK. Meteorological Applications, 22, 789–96. DOI: 10.1002/met.1525.
Barros Santiago, D. D., Correia Filho, W. L. F., de Oliveira-Júnior, J. F., & da Silva Junior, C. A. (2019). Mathematical modeling and use of orbital products in the environmental degradation of the Araripe Forest in the Brazilian Northeast. Modeling Earth Systems and Environment, 5(4), 1429-1441.
Batista, B. A., Correia Filho, W. L. F., de Oliveira-Júnior, J. F., de Barros Santiago, D., & dos Santos, C. T. (2021). Avaliação da expansão urbana na Cidade de Maceió, Alagoas–Nordeste do Brasil. Research, Society and Development, 10(11), e253101119537-e253101119537.
Büyükalaca, O., Bulut, H., & Yilmaz, T. (2001). Analysis of variable-base heating and cooling degree-days for Turkey. Applied Energy, 69, 269 – 283.
CIBSE - The Chartered Institution of Building Services Engineers. (2006). Degree-days: Theory and application. Rep. TM41, 98p.
Correia Filho, W. L. F., de Barros Santiago, D., de Oliveira-Júnior, J. F., & da Silva Junior, C. A. (2019). Impact of urban decadal advance on land use and land cover and surface temperature in the city of Maceió, Brazil. Land use policy, 87, 104026.
Correia Filho, W. L. F., de Barros Santiago, D., de Oliveira-Júnior, J. F., da Silva Junior, C. A., da Silva Oliveira, S. R., da Silva, E. B., & Teodoro, P. E. (2021). Analysis of environmental degradation in Maceió-Alagoas, Brazil via orbital sensors: a proposal for landscape intervention based on urban afforestation. Remote Sensing Applications: Society and Environment, 24, 100621.
Correia Filho, W. L. F., de Oliveira-Júnior, J. F., dos Santos, C. T. B., Batista, B. A., de Barros Santiago, D., da Silva Junior, C. A., ... & Freire, F. M. (2022). The influence of urban expansion in the socio-economic, demographic, and environmental indicators in the City of Arapiraca-Alagoas, Brazil. Remote Sensing Applications: Society and Environment, 25, 100662.
Correia Filho, W. L. F., Santiago, D. B., Oliveira Júnior, J. F., & Da Silva Junior, C. A. (2019). Impact of Urban Decadal Advance on Land Use and Land Cover and Surface Temperature in the City of Maceió, Brazil. Land Use Policy, 1, 1-11.
Cury, B. S., Pereira, C. T. & Masiero, E. (2020). Revisão de estudos microclimáticos em áreas de urbanização informal: conforto térmico e a pandemia de covid-19. Simpósio Brasileiro On-line de Gestão Urbana. SBN 978-65-86753-13-4
De Dear, R. J. & Brager, G. S. (2002). Thermal Comfort in Naturally Ventilated Buildings: Revisions to ASHRAE Standard 55. Energy and Buildings, 34 (6), 549-561.
Freitas, A. F., Melo, B. C. B., Santos, J. S. & Araújo L. E. (2013). Avaliação microclimática em dois fragmentos urbanos situados no Campus I e IV da Universidade Federal da Paraíba. Revista Brasileira de Geografia Física, 6(4), 777-92.
Frota, A. B. & Schiffer, S. R. (2003). Manual de conforto térmico: arquitetura e urbanismo. 7.ed. São Paulo: Studio Nobel.
Guha, S., Govil, H., Dey A. & Gill, N. (2018). Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. Eur J Remote Sens, 51: 667-678.
Humphreys, Michael. (1978). Outdoor Temperatures and Comfort Indoors. Building Research & Practice, 6 (2), 92p. DOI: 10.1080/09613217808550656.
IBGE - Instituto Brasileiro de Geografia e Estatística (2010). Censo demográfico: Aglomerados Subnormais. Rio de Janeiro, RJ.
IBGE - Instituto Brasileiro de Geografia e Estatística (2017). Áreas urbanizadas do Brasil: 2015. Rio de Janeiro, RJ. 28p.
INMET – Instituto Nacional de Meteorologia (2002). Normais Climatológicas do Brasil 1991-2020. Brasília, DF.
Iqbal, M. (1983). An introduction to solar radiation. Library of Congress Cataloging in Publication data. Academic Press Canadian, 390p.
Lee, K., Baek, H. & Cho, C. (2014). The Estimation of Base Temperature for Heating and Cooling Degree-Days for South Korea. Journal of Applied Meteorology and Climatology, 53, 300-309.
MapBiomas - Mapeamento Anual de Cobertura e Uso da Terra do Brasil (2022). Coleção 6. https://mapbiomas.org/
Mourshed, Monjur. (2012). Relationship between annual mean temperature and degree-days. Energy and Buildings, 54, 418–425.
NASA - National Aeronautics and Space Administration (2020). Landsat Science. http://landsat.gsfc.nasa.gov/
Oliveira, S.; Andrade, H. & Vaz, T. (2011). The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Building and Environment, 46 (11).
Pasa, C. C. M. U. & Junior, A. B. (2010). Aplicação do método graus-dia para avaliação do desempenho energético de edificações unifamiliares. XXX Encontro Nacional de Engenharia de Produção. São Carlos, SP.
Pereira dos Santos, A., Henrique Simionatto, H., & Mendonca Felici, E. (2020). Variação do índice NDVI e da temperatura da superfície terrestre na malha urbana do município de Paracatu-Mg entre 1985 e 2005. In Colloquium Exactarum, 12 (2).
Pereira, I. M. & Assis, E. S. (2010). Avaliação de modelos de índices adaptativos para uso no projeto arquitetônico bioclimático. Ambiente Construído, Porto Alegre, 10 (1), 31-51. ISSN 1678-8621.
Prado, L. B., Fialho, E. S., & Santos, L. G. F. (2020). O Sensoriamento remoto e o clima urbano: uma perspectiva de investigação através do campo térmico de superfície na área central do município de Viçosa–MG. Revista Brasileira de Climatologia, 27.
Said SAM. (1992). Degree-day base temperature for residential building energy prediction in Saudi Arabia. ASHRAE Trans, 98, 346–353.
Santiago, D. B. & Gomes, H. B. (2016). Heat islands in the city of Maceió/AL using Orbital Data from Landsat 5. Revista Brasileira de Geografia Física, 9(3), 793-803. DOI:10.5935/1984-2295.20160053
Santiago, D. B., Gomes, H. B. & Ferreira, L. S. (2019). Ilha de calor e a influência no conforto térmico da região integrada de desenvolvimento da grande Teresina (ride). Revista Brasileira de Geografia Física, 12(1), 213-225. https://doi.org/10.26848/rbgf.v12.1.p213-225
Santos, J. B., de Barros Santiago, D., de Barros, H. G., & Amorim, R F. (2016). Avaliação microclimática no município de Petrolina, Pernambuco, Brasil usando técnicas de sensoriamento. Revista Brasileira de Geografia Física, 9(5), 1322-1334. https://doi.org/10.5935/1984-2295.20160090
SIDRA. Sistema IBGE de Recuperação Automática. Censo Demográfico. (2010). https://sidra.ibge.gov.br/territorio.
Sousa, D. M. & Nery, J. T. (2012). O Conforto térmico na perspectiva da Climatologia Geográfica. Geografia, Londrina, 21 (2), 65-83.
Tselepidaki I., Santamouris M., Asimakopoulos D. N. & Kontoyiannidis S. (1994). On the variability of cooling degree-days in an urban environment: application to Athens, Greece. Energy Build, 21, 93–99.
Valor, E., Meneu, V. & Caselles, V. (2001). Daily air temperature and electricity load in Spain. J. Appl. Meteorol, 40, 1413–1421.
Vendramin, A. L. & Souza, S. N. M. et al. (2009). Exame de caso sobre o método de graus-dia para avaliação do dia para avaliação do desempenho energético de uma edificação unifamiliar. Acta Scientiarum. Technology, Maringá, 31 (1), 9-14. DOI: 10.4025/actascitechnol.v31i1.305
Weber, E., Hasenack, H. & Ferreira, C.J.S. (2004). Adaptação do modelo digital de elevação do SRTM para o sistema de referência oficial brasileiro e recorte por unidade da federação. Porto Alegre. UFRGS Centro de Ecologia. Disponível em: <https://www.ufrgs.br/labgeo/index.php/dados-espaciais/260-modelos-digitais-de-elevacao-do-srtm-no-formato-geotiff >.
Xavier, T. C., Oliveira, W. D., & Fialho, E. S. (2021). Análise das condições de conforto térmico da cidade de Vitória, ES. Revista Do Departamento de Geografia, 41, e172471-e172471.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Juliete Baraúna Monteiro; Dimas Barros Santiago
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.