The use of retorted oil shale as urea coating does not modify chemical parameters of free-drained soil solution

Authors

DOI:

https://doi.org/10.33448/rsd-v11i9.31521

Keywords:

Nitrogen fertilization; Heavy metals; Soil contamination.

Abstract

The objective of this work was to investigate the possible contamination of soil solution with chemical elements present in the composition of retorted oil shale (ROS) when used together with nitrogen fertilization as urea. The experiment was conducted in a silvopastoral system with an experimental design of randomized blocks, with subdivided plots. The main treatments consisted of spatial arrangements of trees, while the split plots constituted the broadcast application of urea (U) and urea covered with ROS (U+ROS). Regardless of the spacing of the trees, the use of U + ROS implied no significant effect on the chemical parameters of the soil solution leached at 40 cm of soil depth. The heavy metals Cd, As, Al and Pb, the most hazardous trace elements present in ROS, were not even detected in soil solution, in none sampling event. Such results are mainly attributed to their low contents in ROS. Our results evidenced that, even with large and cumulative rates of ROS application, the potential for contamination of water table with ROS-derived trace elements is negligible in the soil and climate conditions of the present study. Thus, the use of ROS together with nitrogen fertilization has a potential in the use in agriculture, increasing the efficiency of nitrogen fertilization without causing environmental impacts.

References

Associação Brasileira de Normas Técnicas - ABNT. (2004). NBR 1004: Resíduos Sólidos - Classificação. http://www.suape.pe.gov.br/images/publicacoes/normas/ABNT_NBR_n_10004_2004.pdf.

Albuquerque Jr, C. R., Dutra, A. J. B. & Monte, M. B. M. (2004). Eletroquímica da pirita e da arsenopirita na presença de amil xantato de potássio. Revista Escola de Minas, 57, 297-302.

Basso, C. J., Ceretta, C. A., Durigon, R., Poletto, N. & Girotto, E. (2005). Dejeto líquido de suínos: II - perdas de nitrogênio e fósforo por percolação no solo sob plantio direto. Ciência Rural, 35, 1305-1312.

Benini, S., Rypniewski, W. R., Wilson, K. S., Mangani, S. & Ciurli, S. (2004). Molecular details of urease inhibition by boric acid: Insights into the catalytic mechanism. Journal of the American Chemical Society, 126, 3714-3715.

Cantarella. H., Trivelin, P. C. O., Contin, T. L. M., Dias, F. L. F., Rosseto, R., Marcelino, R., Coimbra, R. B. & Quaggio, J. A. (2008) Ammonia volatilization from urease inhibitor -treated urea applied to sugarcane trash blankets. Scientia Agricola, 65, 397-401.

Companhia de Tecnologia de Saneamento Ambiental – CETESB. (2005). Decisão de Diretoria Nº 195. Dispõe sobre valores orientadores para solos e águas subterrâneas no Estado de São Paulo. https://cetesb.sp.gov.br/aguas-subterraneas/wp content/uploads/sites/13/2013/11/tabela_valores_2005-1.pdf

Comissão de Química e Fertilidade do Solo- CQFS-RS/SC. (2016). Manual de adubação e calagem para os estados do RS e de SC. Ed. Porto Alegre: SBCS.

Conselho Nacional do Meio Ambiente - CONAMA. (2005) Resolução nº 357. https://licenciamento.cetesb.sp.gov.br/legislacao/federal/resolucoes/2005_Res_CONAMA_357.pdf.

Conselho Nacional do Meio Ambiente - CONAMA. (2009). Resolução nº 420. https://cetesb.sp.gov.br/areas-contaminadas/wp-content/uploads/sites/17/2017/09/resolucao-conama-420-2009-gerenciamento-de-acs.pdf.

Empresa Brasileira de Pesquisa Agropecuária. (2014). Sistema brasileiro de classificação de solos. 3ª ed. Brasília.

Food and Agriculture Organization of the United Nations - FAO. (2018). World Fertiliser Trends and Outlook 2018. http://www.fao.org/faostat/en/#data/QC/visualize.

Helyar, K. R. & Porter, W. M. (1989). Soil acidification, its measurement and the processes involved. In: Robson, A. D. (ed.) Soil acidity and plant growth. Sydney: Academic Press., p.61-101.

Klein, C. & Agne. S. A. A. (2012). Fósforo: de nutriente à poluente! Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 8, 1713-1721.

Intergovernmental Panel on Climate Change - IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar5/syr/

Lu, C. & Tian, H. (2017). Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth System Science Data, 9, 181-192.

Mira, a. B., Cantarella, H., Netto-Souza, G. J. M, Moreira, l. A, Kamogawa, M. Y. & Otto, R. (2017). Optimizing urease inhibitor usage to reduce ammonia emission following urea application over crop residues. Agriculture, ecosystems & environment, 248, 105-112.

Montalti, M., Fornasiero, D. & Ralston, J. (1991). Ultraviolet-visible spectroscopy study of the kinetics of adsorption of ethyl xanthate on pyrite. Journal of Colloid and Interface Science, 143, 440-450.

Murphy, J. & Riley, J.P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31- 36.

Nelson, D. W. & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In: Sparks, D.L., (Ed.), Methods of Soil Analysis, SSSA Book Series, cap. 34, p. 961-1010.

Nicolini, J., Pereira, B. F., Pillon, C. N., Machado, V. G., Lopes, W. A., Andrade, J. B. & Mangrich, A. S. (2011). Characterization of brazilian oil shale byproducts planned for use as soil conditioner for food and agro-energy production. Journal of Analytical and Applied Pyrolisis, 90, 112-117.

Omar, S. A., Rasha, A. (2018). Shale Oil: Its Present Role in the World Energy Mix. Global Journal of Energy Technology Research, Updates, 5, 11-18.

Orupõld, K., Habicht, J. & Tenno, T. (2008). Leaching behavior of oil shale semicoke: compliance with the waste acceptance criteria for landfills. Oil Shale, 25, 267-275.

Pereira, H. S., Vitti, G. C. & Kordorfer, G. H. (2004). Comportamento de diferentes fontes de silício no solo e na cultura do tomateiro. Revista Brasileira de Ciência do Solo, 27, 101-108.

Pimentel, P. M., Silva Jr., C. N., Melo, D. M. A., Melo, M. A. F., Maldonado, G. & Henrique, D. M. (2006). Caracterização e uso de xisto para adsorção de chumbo (II) em solução. Cerâmica, 52, 194-199.

Ribas, L., Neto,J. M. R., França, A. B. & Porto Alegre, H. K. (2017). The behavior of irati oil shale before and after the pyrolysis process. Journal of petroleum science and engineering, 152, 156-164.

Santos, J.V., Presbiteris, V. C. G. S., Grassi, M. T., Messerschmidt, B. F. P., Martinazzo, R. & Abate, G. (2017) Avaliação da liberação de elementos traço em solos tratados com xisto retortado. Revista Química Nova, 40, 496-505.

Stafanato, J. B., Goulart, R. S., Zonta, E., Lima, E., Mazur, N., Pereira, C. G. & Souza, H. N. (2013). Volatilização de amônia oriunda de ureia pastilhada com micronutrientes em ambiente controlado. Revista Brasileira de Ciência do Solo, 37, 726-732.

Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H. & Wolkweiss, S. J. (1995). Análises de solo, planta e outros materiais. Porto Alegre: Departamento de Solos, UFRGS.

Downloads

Published

03/07/2022

How to Cite

NUNES, R. S. G.; VIEIRA, F. C. B.; MARTINAZZO, R.; BAMBERG, A. L.; SILVEIRA, C. A. P.; TORRES, D. P.; FIGUEIREDO, M. C. dos S. The use of retorted oil shale as urea coating does not modify chemical parameters of free-drained soil solution. Research, Society and Development, [S. l.], v. 11, n. 9, p. e7811931521, 2022. DOI: 10.33448/rsd-v11i9.31521. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31521. Acesso em: 10 aug. 2022.

Issue

Section

Agrarian and Biological Sciences