Bioremediation potential of industrial laundry effluent by agaricomycetes from brazilian tropical dry forest




Nutritional stress; Initial growth time; Ligninolytic enzymes; No sterility; Ecotoxicity.


Mycotic bioremediation of effluents from industrial jeans laundries is a necessary biotechnological treatment to prevent contamination of water bodies. In phase I, the discoloration of Indigo Carmine Dye (ICD) and Textile Effluent (TE) by seven species of Agaricomycetes from the brazilian tropical dry forest (Caatinga) was evaluated. First, nutritional stress was caused by Nitrogen Limitation (NL) at three experimental times, T1 (1 day). T2 (4 days) and T3 (7 days). In phase II, microorganisms were cultivated in the initial growth times Gi1 (10 days) and Gi2 (25 days), Without Addition of Nutrients (WAN) and stress was induced by NL (T1). Subsequently, ICD and TE discoloration tests continued for 28 days. In the ecotoxic analysis, the biotreated samples in phase II were tested on nauplii of Artemia HIGH 5 without the addition of food. In phase I, the percentages of ICD and TE discoloration were greater than 55% using fungi F1, F2, F5 and F6 for 10 days without sterility. In phase II, the best percentages of discoloration were found for TE in Gi1 and for ICD in Gi2, with F1 and F5 (identified by molecular biology). The results showed that Gi1 (WAN) increased the biodegradation of TE and Gi2 (WAN) favored the biodegradation of ICD, in T1 (NL) without sterility. The best enzymatic activity of laccase and lignin peroxidase was presented in F5. The enzyme extracts had a Michaelis-Menten kinetic behavior. All samples of TE bioremediated in phase II no showed toxicity on Artemia sp. in 48 hours of experimentation.


Abessa, D., Ortega, A., Pustiglione Marinsek, G., Roselli, L., Chelotti, L., & Perina, F. (2021). Acute Toxicity of Cigarette Butts Leachate on Nauplii of Artemia sp. Toxicidade aguda do lixiviado de bitucas de cigarro sobre Náuplios de Artemia sp. Brazilian Journal of Animal and Environmental Research, 4(1), 659-670.

Alao, M. B., & Adebayo, E. A. (2022). Fungi as veritable tool in bioremediation of polycyclic aromatic hydrocarbons-polluted wastewater. Journal of Basic Microbiology, 62(3-4), 223-244.

Baldrian. P., Valášková, V., Merhautová, V., & Gabriel, J. (2005). Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese, lead and zinc. Research in Microbiology, 156(5-6), 670-676.

Baptista, N. M. Q., Santos, A. C., Arruda, F. V. F., & Gusmão, N. B. (2012). Production of Enzymes by Lignin Peroxidase and Laccase Filamentous Fungi. Scientia Plena, 8(1).

Barrera, N., Guerrero, L., Debut, A., & Santa-Cruz, P. (2018). Printable nanocomposites of polymers and silver nanoparticles for antibacterial devices produced by DoD technology. PLOS ONE, 13(7), e0200918.

Bartolomé-Camacho, M. C. (2007). Valoración de la toxicidad aguda de biocidas utilizados en ambientes de la vida privada y la salud pública sobre Artemia franciscana. Revista Latinoamericana De Recursos Naturales, 3(1), 90-97.

Bedoui, A., Tigini, V., Ghedira, K., Varese, G. C., & Ghedira, L. C. (2015). Evaluación de una eventual ecotoxicidad inducida por efluentes textiles utilizando una batería de biotests. Environmental Science and Polluttion Research, 22(21), 16700-16708.

Ben Younes, S., & Sayadi, S. (2013). Detoxification of Indigo carmine using a combined treatment via a novel trimeric thermostable laccase and microbial consortium. Journal of Molecular Catalysis B: Enzymatic, 87, 62-68.

Bergami, E., Bocci, E., Vannuccini, M. L., Monopoli, M., Salvati, A., Dawson, K. A., & Corsi, I. (2016). Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae. Ecotoxicology and Environmental Safety, 123, 18-25.

Bergsten-Torralba. L. R., Giese, E., Buss, D., & Silva, M. (2018). Descoloração de efluente têxtil por fungo em condições não estéreis. XXII Congresso Brasileiro de Engenharia Química, Blucher Chemical Engineering Proceedings, 1(5), 1598-1601.

Bernal, S. P. F., Lira, M. M. A., Jean-Baptiste, J., Garcia, P. E., Batista, E., Ottoni, J. R., & Passarini, M. R. Z. (2021). Biotechnological potential of microorganisms from textile effluent: isolation, enzymatic activity and dye discoloration. Annals of the Brazilian Academy of Sciences, 93(4), e20191581.

Bilal, M., Asgher, M., Parra-Saldivar, R., Hu, H., Wang, W., Zhang, X., & Iqbal, H. M. N. (2017). Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants – A review. Science of the Total Environment, 576, 646–659.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.

Buswell, J. A., Cai, Y., & Chang, S. T. (1995). Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes. FEMS Microbiology Letters, 128(1), 81-87.

Camacho-Morales, R. L., Gerardo-Gerardo, J. L., Guillén, N. K., & Sánchez, J. E. (2017). Producción de enzimas ligninolíticas durante la degradación del herbicida paraquat por hongos de la pudrición blanca. Revista Argentina de Microbiología, 49(2), 189–196.

Campos, R., Kandelbauer, A., Robra, K.H.A., Cavaco-Paulo, A., & Gübitz, G.M. (2001). Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. Journal of Biotechnology, 89(1-2), 131–139.

Chhabra, M., Mishra, S., & Sreekrishnan, T. R. (2015). Combination of chemical and enzymatic treatment for eficiente decolorization/degradation of textile effluent: High operational stability of the continuous process. Biochemical Engineering Journal, 93, 17–24.

Conceição, T., Koblitz, M., Kamida, H., & Góes-Neto, A. (2017). Study of the Production of Lentinus crinitus (L.) Fr. Lignolytic Enzymes Grown on Agro-Industrial Waste. Advances in Bioscience and Biotechnology, 8(8), 259-272.

Costa, M. A. L., Farinas, C. S., & Miranda, E. A. (2018). Ethanol precipitation as a downstream processing step for concentration of xylanases produced by submerged and solid-state fermentation. Brazilian Journal of Chemical Engineering, 35(2), 477–488.

Dávila, L., Zambrano, C., Arango, O., Betancur, J., & Arango, W. (2020). Integral use of rice husks for bioconversion with white-rot fungi. Biomass Conversion and Biorefinery.

Dvorak, P., Benova, K., & Vitek, J. (2012). Alternative Biotest on Artemia franciscana. In (Ed.), Ecotoxicology. IntechOpen, (pp. 51–74). Ghousia Begum.

Epole, N., Domínguez-Martín, E. M., Amilcar, R., Tavares, J., Vera, I., Pereira, P., Cebola, M-J., & Rijo, P. (2020). Artemia species: An Important Tool to Screen General Toxicity Samples. Current Pharmaceutical Design, 26(24), 2892-2908.

Food and Agriculture Organization. FAO (2022). Artemia spp. Cultured Aquatic Species Information Programme. Text by Van Stappen, G.. Fisheries and Aquaculture Division [online]. Rome. Updated 2012-02-28 [Cited Thursday, June 23rd 2022].

Góes-Neto, A., Loguercio-Leite, C., & Guerrero, R. T. (2005). DNA Extraction from frozen field-collected and dehydrated herbarium fungal basidiomata: performance of SDS and CTAB-based methods. Biotemas, 18(2), 19-32.

Gupta, A., & Asim, J. (2019). Production of laccase by repeated batch semi-solid fermentation using wheat straw as substrate and support for fungal growth. Bioprocess and Biosystems Engineering, 42, 499-512..

Gutiérrez Pulido, H., & de la Vara Salazar, R. (2012). Análisis y Diseño De Experimentos (3a ed). Mc Graw Hill.

Hatvani, N., & Mécs, I. (2003). Effects of certain heavy metals on the growth, dye decolorization, and enzyme activity of Lentinula edodes. Ecotoxicology and Environmental Safety, 55(2), 199-203.

He, X. L., Song, C., Li, Y. Y., Wang, N., Xu, I., Han, E., & Wei, D. S. (2018). Efficient degradation of Azo dyes by a newly isolated fungos Trichoderma Tomentosum under non-sterile conditions. Ecotoxicology and Environmental Safety, 150, 232 – 239.

Henn, C., Monteiro, D. A., Boscolo, M., da Silva, R., & Gomes, E. (2020). Biodegradation of atrazine and ligninolytic enzyme production by basidiomycete strains. BMC Microbiology, 20(266).

Honorato, A. C., Machado, J. M., Celante, G., Borges, W. G. P., Dragunski, D.C., & Caetano, J. (2015). Biosorption of methylene blue using agro-industrial residues. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(7), 705-710.

Janusz, G., Pawlik, A., Sulej, J., Świderska-Burek, U., Jarosz-Wilkołazka, A., & Paszczyński, A. (2017). Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiology Reviews, 41(6), 941–962.

Johnson, K. A., & Goody, R. S. (2011). The Original Michaelis Constant: Translation of the 1913 Michaelis–Menten Paper. Biochemistry, 50(39), 8264–8269.

Kaushik, P., & Malik, A. (2009). Fungal dye decolourization: Recent advances and future potential. Environment International, 35(1), 127–141.

Kenkebashvili, N., Elisashvili, V., & Wasser, S.P. (2012). Effect of carbon, nitrogen sources and copper concentration on the ligninolytic enzyme production by Coriolopsis gallica. Journal of Waste Conversion Bioproducts and Biotechnology, 1(2), 22–27.

Koutsaftis, A., & Aoyama, I. (2008). Toxicity of Diuron and copper pyrithione on the brine shrimp, Artemia franciscana: The effects of temperature and salinity. Journal of Environmental Science and Health, Part A, 43(14), 1581–1585.

Kumar, A., & Chandra, R. (2020). Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon, 6(2), e03170.

Kuwahara, M., Glenn, J. K., Morgan, M. A., & Gold, M. H. (1984). Separation and characterization of two extracellular H2O2 dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Letters, 169(2), 247-250.

Lima-Júnior, N., Gibertoni, T. B., & Malosso, E. (2014). Delimitation of some neotropical laccate Ganoderma (Ganodermataceae): molecular phylogeny and morphology. Revista de Biología Tropical 62(3), 1197–1208.

Lordêlo, C. S. M., Brito, S. V., Silva, S. V., Mitoshi, K. H., De Vasconcellos-Neto, T. J. R., Góes-Neto, A., & Bellos, K. M. G. (2014). Production of Manganese Peroxidase by Trametes villosa on Unexpensive Substrate and Its Application in the Removal of Lignin from Agricultural Wastes. Advances in Bioscience and Biotechnology, 5(14), 1067-1077.

Mattila, H., Österman-Udd, J., Mali, T., & Lundell, T. (2022). Basidiomycota Fungi and ROS: Genomic Perspective on Key Enzymes Involved in Generation and Mitigation of Reactive Oxygen Species. Frontiers in Fungal Biology, 3, e837605.

Mehandia, S., Sharma, S. C.,, & Arya, S. K. (2020). Isolation and characterization of an alkali and thermostable laccase from a novel Alcaligenes faecalis and its application in decolorization of synthetic dyes. Biotechnology Reports, 25, e00413.

Mehra, S., Singh, M., & Chadha, P. (2021). Adverse Impact of Textile Dyes on the Aquatic Environment as well as on Human Beings. Toxicology International, 28(2), 165-176.

Moncalvo, J. M., Lutzoni, F. M., Rehner, A. S., Johnson, J., & Vilgalys, R. (2000). Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Systematic Biology 49(2), 278–305.

Moreira, N. S. L. (2006). Enzimas ligninolíticas produzidas por Psilocybe castanella CCB444 em solo contaminado com hexaclorobenzeno – São Paulo. [Dissertação de Mestrado, Instituto de Botânica da Secretaria de Estado do Meio Ambiente], Governo do Estado de São Paulo, Infraestrutura e Meio Ambiente, Memórias do Instituto de Botânica.

Naciri, N., Farahi, A., Rafqah, S., Nasrellah, H., El Mhammedi, M. A., Lançar, I., & Bakasse, M. (2016). Effective photocatalytic decolorization of indigo carmine dye in Moroccan natural phosphate-TiO2 aqueous suspensions. Optical Materials, 52, 38-43.

Oliveira, G. A. R., Lapuente, J., Teixido, C. P. E., Borras, M., & Oliveira, D. P. (2016). Textile dyes induce toxicity on zebrafish early life stages. Environmental Toxicology and Chemistry, 35(2), 429–434.

Orozco, K., & Quesada, S. (1995). Determinación de la actividad de la fructosa 1,6 difosfatasa en leucocitos. Revista Médica del Hospital Nacional de Niños Dr. Carlos Sáenz Herrera, 30(1-2), 9-18.

Osorio, J., Vidal, I., & Quintero, J. (2011). Decolorization of textile wastewater using the white rot fungi anamorph R1 of Bjerkandera sp. Revista Facultad de Ingeniería Universidad de Antioquia, 57, 85-93.

Ozcirak Ergun, S.,, & Ozturk Urek, R. (2017). Production of ligninolytic enzymes by solid state fermentation using Pleurotus ostreatus. Annals of Agrarian Science, 15(2), 273–277.

Raman, D., & Kanmani S. (2016). Textile dye degradation using nano zero valent iron: A review. Journal of Environmental Management, 177, 341-355.

Rio, G. F., Silva, B. V., Martinez, S. T., & Pinto, A. C. (2015). Anthranilic acids from isatin: an efficient, versatile and environmentally friendly method. Annals of the Brazilian Academy of Sciences, 87(3), 1525-1529.

Rojo, N., Smith, K., Perales, J., & Mayer, P. (2012). Recreating the seawater mixture composition of HOCs in toxicity tests with Artemia franciscana by passive dosing. Aquatic Toxicology, 120-121, 27-34.

Sakai, R., Mendoza, D. M., Konadu, K. T., Cindy, Aoki, Y., Hirajima, T., Ichinose, H., & Sasaki, K. (2022). Laccase-mediator system for enzymatic degradation of carbonaceous matter in the sequential pretreatment of double refractory gold ore from Syama mine, Mali. Hydrometallurgy, 212, e105894.

Santa-Cruz, P.A., & Teles, F.S. (2003). Spectra Lux Software v. 2.0 Beta. Ponto Quântico Nanodispositivos, RENAMI, 138.

Saroj, S., Dubey, S., & Agarwal, P. (2015). Evaluation of the efficacy of a fungal consortium for degradation of azo dyes and simulated textile dye effluents. Sustainable Water Resources Management, 1, 233–243.

Separrat, M. C. N., Martínez, M. J., Cabello, M. N., & Arambarri, A. M. (2002). Screening for ligninolytic enzymes in autochthonous fungal strains from Argentina isolated from different substrata. Revista Iberoamericana de Micología, 19(3), 181-185.

Shertate, R.S., & Thorat, P. (2014). Biotransformation of textile dyes: a bioremedial aspect of marine environment. American Journal of Environmental Sciences, 10(5), 489-499.

Singh, G., Capalash, N., Goel, R., & Sharma, P. (2007). A pH-stable laccase from alkali-tolerant γ-proteobacterium JB: Purification, characterization and indigo carmine degradation. Enzyme and Microbial Technology, 41(6-7), 794–799.

Singh, G., Singh, S., Kaur, K., Kumar Arya, S., & Sharma, P. (2019). Thermo and halo tolerant laccase from Bacillus sp. SS4: Evaluation for its industrial usefulness. The Journal of General and Applied Microbiology, 65(1), 26-33.

Staden, R., Beal, K. F., & Bonfield, J. K. (2000). The Staden Package, 1998. In: Misener, S., Krawetz, S.A. (Eds.), Bioinformatics methods and protocols. Methods in Molecular Biology, 132, (pp. 115–130). Humana Press, Totowa, NJ.

Tien, M., & Kirk, T. K. (1988). Lignin peroxidase of Phanerochaete Chrysosporium. Methods in Enzymology, 161, 238–249.

Velasco, S. J., Retana, O., Castro, M. J., Castro, M. G., Monroy, M., Ocampo, C., Cruz, C., & Becerril, C. (2016). Salinity effect on reproductive potential of four Artemia franciscana (Kellogg, 1906) Mexican populations grown in laboratory. International Journal of Fisheries and Aquatic Studies, 4(3), 247-352.

Velayudhannair, K., Divya, K. R., & Munuswamy, N. (2017). Quality evaluation of the invader species, Artemia franciscana from Covelong salt works, Kelambakkam, South India. International Journal of Aquatic Biology,5(4), 246-251.

White, T. J., Bruns, T., Lee S., & Taylor J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (Eds.), PCR protocols, a guide to methods and applications, (pp. 315–322). Academic Press, New York.

Yesilada, O., Birhanli, E., & Geckil, H. (2018). Bioremediation and Decolorization of Textile Dyes by White Rot Fungi and Laccase Enzymes. In Prasad, R. (Eds.), Mycoremediation and Environmental Sustainability. (pp. 121–153). Fungal Biology. Springer, Cham.

Zhang, H., Zhang, S., He, F., Qin, X., Zhang, X., & Yang, Y. (2016). Characterization of a manganese peroxidase from white-rot fungus Trametes sp.48424 with strong ability of degrading different types of dyes and polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 320, 265–277.




How to Cite

BARRERA, N. E.; SANTOS NETO, I. J. dos; OLIVEIRA, V. R. T. de; GUSMÃO, N. B. de. Bioremediation potential of industrial laundry effluent by agaricomycetes from brazilian tropical dry forest. Research, Society and Development, [S. l.], v. 11, n. 9, p. e23111931610, 2022. DOI: 10.33448/rsd-v11i9.31610. Disponível em: Acesso em: 10 aug. 2022.



Agrarian and Biological Sciences