Pesticides in Brazil: an understanding of the current scenario of use and the properties of the soil that act on the dynamics and retention of these molecules

Authors

DOI:

https://doi.org/10.33448/rsd-v11i9.31614

Keywords:

Agrotoxic; Environment; Biorremediation; Soil health.

Abstract

In recent decades, Brazil has shown a trend of significant increase in the use of pesticides. In this scenario, as the country is a major producer and exporter of agricultural food, this increase represents an unprecedented environmental problem. The occurrence of pesticides in the soil has become a highly significant environmental problem that has been exacerbated by its widespread use worldwide and the absence of cost-effective remediation technologies on a large scale. The fate of the insecticide may be affected by physical, chemical, and biological characteristics, and the way these features interact with ecosystems. The present work aimed to make an analysis through studies carried out previously on the physicochemical properties of the soil that act on the dynamics and retention of the molecules of the most used pesticides in Brazil, in order to collaborate for monitoring and evaluation studies that seek appropriate measures to sustainable development and the achievement of soil degradation neutrality.

References

Agboola, O. D., & Benson, N. U. (2021). Physisorption and Chemisorption Mechanisms Influencing Micro (Nano) Plastics-Organic Chemical Contaminants Interactions: A Review. Frontiers in Environmental Science, 9. https://www.frontiersin.org/article/10.3389/fenvs.2021.678574

Aguer, J. P., Hermosin, M. C., Calderon, M. J., & Cornejo, J. (2000). Fenuron sorption on homoionic natural and modified smectites. Journal of Environmental Science and Health, Part B, 35(3), 279–296. https://doi.org/10.1080/03601230009373270

Alexander, M. (2000). Aging, Bioavailability, and Overestimation of Risk from Environmental Pollutants. Environmental Science & Technology, 34(20), 4259–4265. https://doi.org/10.1021/es001069+

Alves, O. R., Bandeira, O. A., Borges, A. A., Prado, R. M., & Pasqualetto, A. (2016). Biotecnologias de remediação de solos contaminados com agroquímicos. Agrarian Academy, 3(5), 27–50. https://doi.org/10.18677/Agrarian_Academy_2016_003

Alves, R. E. (2021). A relação entre agricultura, degradação do solo e tempestades de areia. Revista Ayika, 1(1), 50–56. https://www.revistas.uneb.br/index.php/ayika/article/view/13407

Ascough, J. C., Fathelrahman, E. M., & McMaster, G. S. (2008). Insect Pest Models and Insecticide Application. Em S. E. Jørgensen & B. D. Fath (Orgs.), Encyclopedia of Ecology (p. 1978–1985). Academic Press. https://doi.org/10.1016/B978-008045405-4.00208-1

Ballantyne, B. (2003). Toxicology of Fungicides. Em Pesticide Toxicology and International Regulation (Vol. 1, p. 191–303). John Wiley & Sons, Ltd. https://doi.org/10.1002/0470091673.ch6

Barbosa, R. S., Souza, J. P. de, Almeida, D. J. de, Santos, J. B. dos, Paiva, W. dos S., & Porto, M. de J. (2020). As possíveis consequências da exposição a agrotóxicos: Uma revisão sistemática. Research, Society and Development, 9(11), e45191110219–e45191110219. https://doi.org/10.33448/rsd-v9i11.10219

Benoit, P., & Preston, C. M. (2000). Transformation and binding of 13C and 14C-labelled atrazine in relation to straw decomposition in soil. European Journal of Soil Science, 51(1), 43–54. https://doi.org/10.1046/j.1365-2389.2000.00288.x

Bloom, B. M., & Laubach, G. D. (1962). The Relationship Between Chemical Structure and Pharmacological Activity. Annual Review of Pharmacology, 2(1), 67–108. https://doi.org/10.1146/annurev.pa.02.040162.000435

Bolognesi, C., & Merlo, F. D. (2019). Pesticides: Human Health Effects☆. Em J. Nriagu (Org.), Encyclopedia of Environmental Health (Second Edition) (p. 118–132). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.11818-4

Bongue, D., Gaspar, M. da G. de S., Chitombi, A. N., João, P. G., & Ferreira, J. C. (2019). Degradação química do solo da funda. Brazilian Applied Science review, 3(2), 1417–1432. https://doi.org/10.34115/basr.v3i2.1749

Botelho, M. G. L., Pimentel, B. dos S., Furtado, L. G., Lima, M. do C. S., Carneiro, C. R. de O., Batista, V. de A., Marinho, J. L. M., Monteiro, A. L. P. R., Silva, T. P. da, Pontes, A. N., & Costa, M. do S. S. (2020). Agrotóxicos na agricultura: Agentes de danos ambientais e a busca pela agricultura sustentável. Research, Society and Development, 9(8), e396985806–e396985806. https://doi.org/10.33448/rsd-v9i8.5806

Lei N.o 7.802, de 11 de Julho de 1989, no No 7.802, Presidência da República (1989). http://www.planalto.gov.br/ccivil_03/leis/l7802.htm

DECRETO N.o 4.074, DE 4 DE JANEIRO DE 2002, Presidência da República (2002) (testimony of Brasil). http://www.planalto.gov.br/ccivil_03/decreto/2002/d4074.htm

Chaplain, V., Mamy, L., Vieublé-Gonod, L., Mougin, C., Benoit, P., Barriuso, E., & Nélieu, S. (2011). Fate of Pesticides in Soils: Toward an Integrated Approach of Influential Factors. Em Pesticides in the Modern World—Risks and Benefits (1o ed, Vol. 1). IntechOpen. https://doi.org/10.5772/17035

Clausen, L., Fabricius, I., & Madsen, L. (2001). Adsorption of Pesticides onto Quartz, Calcite, Kaolinite, and α-Alumina. Journal of Environmental Quality, 30(3), 846–857. https://doi.org/10.2134/jeq2001.303846x

Correia, F. V., Mercante, F. M., Fabrício, A. C., Campos, T. M. P., JR, E. V., & Langenbach, T. (2007). Adsorção de atrazina em solo tropical sob plantio direto e convencionaL. Pesticidas: r. ecotoxicol. e meio ambiente, 17(1), 37–46. https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/252102/1/10663331321PB.pdf

Correia, N. M. (2018, julho). Comportamento dos herbicidas no ambiente. Comportamento dos herbicidas no ambiente, 1a edição, 30. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/185779/1/DOC-160.pdf

CORREIA, N. M. (2021). Herbicidas (Proteção química da lavoura, p. 48–58) [Informe Agropecuário]. EPAMIG. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/232043/1/Nubia-Protecao-quimica-da-lavoura.pdf

Costa, L. G. (2015). Chapter 9—The neurotoxicity of organochlorine and pyrethroid pesticides. Em M. Lotti & M. L. Bleecker (Orgs.), Handbook of Clinical Neurology (Vol. 131, p. 135–148). Elsevier. https://doi.org/10.1016/B978-0-444-62627-1.00009-3

Dijkgraaf, E., & Vollebergh, H. R. J. (2004). Burn or bury? A social cost comparison of final waste disposal methods. Ecological Economics, 50(3), 233–247. https://doi.org/10.1016/j.ecolecon.2004.03.029

Dominati, E., Mackay, A., Green, S., & Patterson, M. (2014). A soil change-based methodology for the quantification and valuation of ecosystem services from agro-ecosystems: A case study of pastoral agriculture in New Zealand. Ecological Economics, 100(1), 119–129. https://doi.org/10.1016/j.ecolecon.2014.02.008

Eevers, N., Hawthorne, J. R., White, J. C., Vangronsveld, J., & Weyens, N. (2016). Exposure of Cucurbita pepo to DDE-contamination alters the endophytic community: A cultivation dependent vs a cultivation independent approach. Environmental Pollution, 209, 147–154. https://doi.org/10.1016/j.envpol.2015.11.038

Eevers, N., White, J. C., Vangronsveld, J., & Weyens, N. (2017). Bio- and Phytoremediation of Pesticide-Contaminated Environments: A Review. Em A. Cuypers & J. Vangronsveld (Orgs.), Advances in Botanical Research (Vol. 83, p. 277–318). Academic Press. https://doi.org/10.1016/bs.abr.2017.01.001

EMBRAPA. (2006, setembro). Época de aplicação dos herbicidas. Documentos Online. http://www.cnpt.embrapa.br/biblio/do/p_do62_11.htm

FAO. (2015). Healthy soils are the basis for healthy food production (p. 4). Food and Agriculture Organization of the United Nations. https://www.fao.org/documents/card/en/c/645883cd-ba28-4b16-a7b8-34babbb3c505/

FAO. (2022). FAO Soils Portal. Food and Agriculture Organization of the United Nations. https://www.fao.org/soils-portal/about/all-definitions/en/

Farenhorst, A. (2006). Importance of Soil Organic Matter Fractions in Soil-Landscape and Regional Assessments of Pesticide Sorption and Leaching in Soil. Soil Science Society of America Journal, 70(3), 1005–1012. https://doi.org/10.2136/sssaj2005.0158

Ferreira, C. S. S., Seifollahi-Aghmiuni, S., Destouni, G., Ghajarnia, N., & Kalantari, Z. (2022). Soil degradation in the European Mediterranean region: Processes, status and consequences. Science of The Total Environment, 805, 150106. https://doi.org/10.1016/j.scitotenv.2021.150106

Gavrilescu, M. (2009, setembro 1). Emerging processes for soil and groundwater cleanup—Potential benefits and risks. Environmental Engineering and Management Journal, 8(1), 16. https://www.researchgate.net/publication/289159824_Emerging_processes_for_soil_and_groundwater_cleanup_-_Potential_benefits_and_risks

Gebler, L., Espanhol, G. L., Firta, I. N., & Spadotto, C. A. (2007). Dispersão de poluentes e seu monitoramento na agropecuária. Em Gestão ambiental na agropecuária (Vol. 2, p. 105–166). Embrapa Uva e Vinho. http://www.alice.cnptia.embrapa.br/handle/doc/11870

Gilani, R. A., Rafique, M., Rehman, A., Munis, M. F. H., Rehman, S. ur, & Chaudhary, H. J. (2016). Biodegradation of chlorpyrifos by bacterial genus Pseudomonas. 56(1), 105–119. https://doi.org/10.1002/jobm.201500336

Gonçalves, C. R., & Delabona, P. da S. (2022). Strategies for bioremediation of pesticides: Challenges and perspectives of the Brazilian scenario for global application – A review. Environmental Advances, 8, 100220. https://doi.org/10.1016/j.envadv.2022.100220

Gupta, P. K. (2018). Chapter 45—Toxicity of Fungicides. Em R. C. Gupta (Org.), Veterinary Toxicology (Third Edition) (p. 569–580). Academic Press. https://doi.org/10.1016/B978-0-12-811410-0.00045-3

Haimi, J. (2000). Decomposer animals and bioremediation of soils. Environmental Pollution, 107(2), 233–238. https://doi.org/10.1016/S0269-7491(99)00142-6

Han, L., Zhao, D., & Li, C. (2015). Isolation and 2,4-D-degrading characteristics of Cupriavidus campinensis BJ71. Brazilian Journal of Microbiology, 46(1), 433–441. https://doi.org/10.1590/S1517-838246220140211

Hatfield, J. L., Sauer, T. J., & Cruse, R. M. (2017). Chapter One - Soil: The Forgotten Piece of the Water, Food, Energy Nexus. Em D. L. Sparks (Org.), Advances in Agronomy (Vol. 143, p. 1–46). Academic Press. https://doi.org/10.1016/bs.agron.2017.02.001

Hong, Q., Zhang, Z., Hong, Y., & Li, S. (2007). A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. International Biodeterioration & Biodegradation, 59(1), 55–61. https://doi.org/10.1016/j.ibiod.2006.07.013

Hussain, S., Siddique, T., Arshad, M., & Saleem, M. (2009). Bioremediation and Phytoremediation of Pesticides: Recent Advances. Critical Reviews in Environmental Science and Technology, 39(10), 843–907. https://doi.org/10.1080/10643380801910090

IBAMA. (2021). Relatórios de comercialização de agrotóxicos. IBAMA - Ministério do Meio Ambiente. http://www.ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos

IBGE. (2017). IBGE, 2017. IBGE - Censo Agro 2017. https://censoagro2017.ibge.gov.br//2013-agencia-de-noticias/releases/25789-censo-agro-2017-populacao-ocupada-nos-estabelecimentos-agropecuarios-cai-8-8.html

Islas-García, A., Vega-Loyo, L., Aguilar-López, R., Xoconostle-Cázares, B., & Rodríguez-Vázquez, R. (2015). Evaluation of hydrocarbons and organochlorine pesticides and their tolerant microorganisms from an agricultural soil to define its bioremediation feasibility. Journal of Environmental Science and Health, Part B, 50(2), 99–108. https://doi.org/10.1080/03601234.2015.975605

Jan, A. T., Azam, M., Ali, A., & Haq, Q. Mohd. R. (2014). Prospects for Exploiting Bacteria for Bioremediation of Metal Pollution. Critical Reviews in Environmental Science and Technology, 44(5), 519–560. https://doi.org/10.1080/10643389.2012.728811

Javaid, M. K., Ashiq, M., & Tahir, M. (2021). Potential of Biological Agents in Decontamination of Agricultural Soil. Scientifica, 2016(1), 5. https://doi.org/10.1155/2016/1598325

Javanbakht, V., Alavi, S. A., & Zilouei, H. (2013). Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Science and Technology, 69(9), 1775–1787. https://doi.org/10.2166/wst.2013.718

Jobby, R., Jha, P., Yadav, A. K., & Desai, N. (2018). Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere, 207(1), 255–266. https://doi.org/10.1016/j.chemosphere.2018.05.050

Kah, M., & Brown, C. D. (2006). Adsorption of ionisable pesticides in soils. Reviews of Environmental Contamination and Toxicology, 188, 149–217. Scopus. https://doi.org/10.1007/978-0-387-32964-2_5

Karlik, J. F. (2003). INSECTS AND OTHER ANIMALS | Insecticides. Em A. V. Roberts (Org.), Encyclopedia of Rose Science (p. 460–466). Elsevier. https://doi.org/10.1016/B0-12-227620-5/00157-9

Lilburne, L., Eger, A., Mudge, P., Ausseil, A.-G., Stevenson, B., Herzig, A., & Beare, M. (2020). The Land Resource Circle: Supporting land-use decision making with an ecosystem-service-based framework of soil functions. Geoderma, 363, 114134. https://doi.org/10.1016/j.geoderma.2019.114134

Liu, Y., Lonappan, L., Brar, S. K., & Yang, S. (2018). Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review. Science of The Total Environment, 645, 60–70. https://doi.org/10.1016/j.scitotenv.2018.07.099

Lopes, A. R., Danko, A. S., Manaia, C. M., & Nunes, O. C. (2013). Molinate biodegradation in soils: Natural attenuation versus bioaugmentation. Applied Microbiology and Biotechnology, 97(6), 2691–2700. https://doi.org/10.1007/s00253-012-4096-y

MAPA. (2022, março 4). Informações técnicas. Ministério da Agricultura, Pecuária e Abastecimento. https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/agrotoxicos/informacoes-tecnicas

Marchi, G., Santos, E. C., & Guimarães, T. G. (2008, outubro). Herbicidas: Mecanismos de ação e uso. EMBRAPA, 1(1a edição), 34. https://www.infoteca.cnptia.embrapa.br/bitstream/doc/571939/1/doc227.pdf

Martínez-Escudero, C. M., Garrido, I., Flores, P., Hellín, P., Contreras-López, F., & Fenoll, J. (2022). Remediation of triazole, anilinopyrimidine, strobilurin and neonicotinoid pesticides in polluted soil using ozonation and solarization. Journal of Environmental Management, 310, 114781. https://doi.org/10.1016/j.jenvman.2022.114781

Massoud, M., Saad, A., Abdel-Megeed, A., Mourad, A., Barakat, A., & Hamid, N. (2013). Bacterial Strains from the Rhizosphere for Remediation of Certain Pesticides. Bacterial Strains from the Rhizosphere for Remediation of Certain Pesticides, 15(4), 16. https://www.researchgate.net/profile/Ahmed-Abdel-Megeed/publication/234013513_Bacterial_Satains/links/02bfe50e417e5f0703000000/Bacterial-Satains.pdf

McGuinness, M., & Dowling, D. (2009). Plant-Associated Bacterial Degradation of Toxic Organic Compounds in Soil. International Journal of Environmental Research and Public Health, 6(8), 2226–2247. https://doi.org/10.3390/ijerph6082226

Moraes, R. F. (2019). TD 2506—Agrotóxicos no Brasil: Padrões de uso, política da regulação e prevenção da captura regulatória. IPEA - Instituto de Pesquisa Econômica Aplicada. https://www.ipea.gov.br/portal/index.php?option=com_content&view=article&id=35016:td-2506-agrotoxicos-no-brasil-padroes-de-uso-politica-da-regulacao-e-prevencao-da-captura-regulatoria&catid=419:2019&directory=1

Müller, F., Ackermann, P., & Margot, P. (2010). Fungicides, Agricultural. Em Wiley-VCH Verlag GmbH & Co. KGaA (Org.), Ullmann’s Encyclopedia of Industrial Chemistry (p. a12_085.pub2). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/14356007.a12_085.pub2

Navarro, L., Camacho, R., López, J. E., & Saldarriaga, J. F. (2021). Assessment of the potential risk of leaching pesticides in agricultural soils: Study case Tibasosa, Boyacá, Colombia. Heliyon, 7(11), e08301. https://doi.org/10.1016/j.heliyon.2021.e08301

Nowak, K. M., Girardi, C., Miltner, A., Gehre, M., Schäffer, A., & Kästner, M. (2013). Contribution of microorganisms to non-extractable residue formation during biodegradation of ibuprofen in soil. Science of The Total Environment, 445–446, 377–384. https://doi.org/10.1016/j.scitotenv.2012.12.011

Ochoa, V., & Maestroni, B. (2018). Chapter 9—Pesticides in Water, Soil, and Sediments. Em B. Maestroni & A. Cannavan (Orgs.), Integrated Analytical Approaches for Pesticide Management (p. 133–147). Academic Press. https://doi.org/10.1016/B978-0-12-816155-5.00009-9

OECD. (2000). Test No. 106: Adsorption - Desorption Using a Batch Equilibrium Method (Guidelines for the Testing of Chemicals No 106; Physical-Chemical Properties, p. 44). OECD. https://www.oecd-ilibrary.org/environment/test-no-106-adsorption-desorption-using-a-batch-equilibrium-method_9789264069602-en

Ojuederie, O. B., & Babalola, O. O. (2017). Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review. International Journal of Environmental Research and Public Health, 14(12), 1504. https://doi.org/10.3390/ijerph14121504

Okeke, B. C., Siddique, T., Arbestain, M. C., & Frankenberger, W. T. (2002). Biodegradation of γ-Hexachlorocyclohexane (Lindane) and α-Hexachlorocyclohexane in Water and a Soil Slurry by a Pandoraea Species. Journal of Agricultural and Food Chemistry, 50(9), 2548–2555. https://doi.org/10.1021/jf011422a

Oliveira, J., Lima, A., Minini, D., & Silva, E. (2018). Usos, efeitos e potencial tóxico dos agrotóxicos na qualidade do solo. Agrarian Academy, 5(9). https://doi.org/10.18677/Agrarian_Academy_2018a45

Oliveira, M. F., & Brighenti, A. M. (2018). Controle de plantas daninhas: Métodos físico, mecânico, cultural, biológico e alelopatia (1o ed, Vol. 1). https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1103281/controle-de-plantas-daninhas-metodos-fisico-mecanico-cultural-biologico-e-alelopatia

Oliveira, M., Frihling, B. E. F., Velasques, J., Filho, F. J. C. M., Cavalheri, P. S., & Migliolo, L. (2020). Pharmaceuticals residues and xenobiotics contaminants: Occurrence, analytical techniques and sustainable alternatives for wastewater treatment. Science of The Total Environment, 705, 135568. https://doi.org/10.1016/j.scitotenv.2019.135568

Pascal-Lorber, S., & Laurent, F. (2011). Phytoremediation Techniques for Pesticide Contaminations. Em E. Lichtfouse (Org.), Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation (Vol. 1, p. 77–105). Springer Netherlands. https://doi.org/10.1007/978-94-007-0186-1_4

Peña, A., Delgado-Moreno, L., & Rodríguez-Liébana, J. A. (2020). A review of the impact of wastewater on the fate of pesticides in soils: Effect of some soil and solution properties. Science of The Total Environment, 718, 134468. https://doi.org/10.1016/j.scitotenv.2019.134468

Raimondo, E. E., Saez, J. M., Aparicio, J. D., Fuentes, M. S., & Benimeli, C. S. (2020). Bioremediation of lindane-contaminated soils by combining of bioaugmentation and biostimulation: Effective scaling-up from microcosms to mesocosms. Journal of Environmental Management, 276, 111309. https://doi.org/10.1016/j.jenvman.2020.111309

Rasool, S., Rasool, T., & Gani, K. M. (2022). A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chemical Engineering Journal Advances, 100301. https://doi.org/10.1016/j.ceja.2022.100301

Reis, R. R., Sampaio, S. C., & de Melo, E. B. (2014). An alternative approach for the use of water solubility of nonionic pesticides in the modeling of the soil sorption coefficients. Water Research, 53, 191–199. https://doi.org/10.1016/j.watres.2014.01.023

Rezende-Teixeira, P., Dusi, R. G., Jimenez, P. C., Espindola, L. S., & Costa-Lotufo, L. V. (2022). What can we learn from commercial insecticides? Efficacy, toxicity, environmental impacts, and future developments. Environmental Pollution, 300, 118983. https://doi.org/10.1016/j.envpol.2022.118983

Rossetti, M. F., Stoker, C., & Ramos, J. G. (2020). Agrochemicals and neurogenesis. Molecular and Cellular Endocrinology, 510, 110820. https://doi.org/10.1016/j.mce.2020.110820

Saljnikov, E., Mueller, L., Lavrishchev, A., & Eulenstein, F. (Orgs.). (2022). Advances in Understanding Soil Degradation. Springer International Publishing. https://doi.org/10.1007/978-3-030-85682-3

Saravanan, A., Kumar, P. S., Jeevanantham, S., Anubha, M., & Jayashree, S. (2022a). Degradation of toxic agrochemicals and pharmaceutical pollutants: Effective and alternative approaches toward photocatalysis. Environmental Pollution, 298, 118844. https://doi.org/10.1016/j.envpol.2022.118844

Saravanan, A., Kumar, P. S., Jeevanantham, S., Anubha, M., & Jayashree, S. (2022b). Degradation of toxic agrochemicals and pharmaceutical pollutants: Effective and alternative approaches toward photocatalysis. Environmental Pollution, 298, 118844. https://doi.org/10.1016/j.envpol.2022.118844

Sarkar, B., Mukhopadhyay, R., Mandal, A., Mandal, S., Vithanage, M., & Biswas, J. K. (2020). Chapter 8—Sorption and desorption of agro-pesticides in soils. Em M. N. V. Prasad (Org.), Agrochemicals Detection, Treatment and Remediation (p. 189–205). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-08-103017-2.00008-8

Scherer Roman, E., Vargas, L., Antonio Rizzardi, M., Hall, L., Beckie, H., & M. Wolf, T. (2005). Como funcionam os herbicidas da biologia à aplicação (21. ed). Gráfica Editora Berthier. http://www.bdpa.cnptia.embrapa.br/consulta/busca?b=pc&id=821542&biblioteca=vazio&busca=autoria%5C:%22RIZZARDI,%20M.%22&qFacets=autoria%5C:%22RIZZARDI,%20M.%22&sort=&paginacao=t&paginaAtual=1

Schroll, R., Becher, H. H., Dörfler, U., Gayler, S., Grundmann, S., Hartmann, H. P., & Ruoss, J. (2006). Quantifying the Effect of Soil Moisture on the Aerobic Microbial Mineralization of Selected Pesticides in Different Soils. Environmental Science & Technology, 40(10), 3305–3312. https://doi.org/10.1021/es052205j

Shaheen, I., Ahmad, K. S., & Zahra, T. (2019). Evaluating the fate of agrochemical through adsorption and desorption studies of chlorfluazuron in selected agricultural soils. Journal of King Saud University - Science, 31(4), 612–617. https://doi.org/10.1016/j.jksus.2017.12.005

Shiratsuchi, L. S., & Fontes, J. R. A. (2002, dezembro 1). Tecnologia de Aplicação de Herbicidas. Tecnologia de Aplicação de Herbicidas, 78(1), 30. https://ainfo.cnptia.embrapa.br/digital/bitstream/CPAC-2009/25620/1/doc_78.pdf

Silva, C. C., Souza, M. de F., Passos, A. B. R. de J., Silva, T. S., Borges, M. P. da S., dos Santos, M. S., & Silva, D. V. (2022). Risk of environmental contamination due to the hexazinone application in agricultural soils in northeastern Brazil. Geoderma Regional, 28, e00481. https://doi.org/10.1016/j.geodrs.2022.e00481

SILVA, C. M. M. S., FAY, E. F., & VIEIRA, R. F. (2007, maio 24). Efeito dos fungicidas metalaxil e fenarimol na microbiota do solo. - Portal Embrapa. Pesticidas: Revista de Ecotoxicologia e Meio Ambiente, 15(1), 93–104. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/15476/efeito-dos-fungicidas-metalaxil-e-fenarimol-na-microbiota-do-solo

Singh, B. K., Walker, A., & Wright, D. J. (2006). Bioremedial potential of fenamiphos and chlorpyrifos degrading isolates: Influence of different environmental conditions. Soil Biology and Biochemistry, 38(9), 2682–2693. https://doi.org/10.1016/j.soilbio.2006.04.019

Sorensen, S. R., & Aamand, J. (2001). Biodegradation of the Phenylurea Herbicide Isoproturon and its Metabolites in Agricultural Soils. Biodegradation, 12(1), 69–77. https://doi.org/10.1023/A:1011902012131

Souza, A. D. S., Leal, J. F. L., Langaro, A. C., Carvalho, G. S. D., & Pinho, C. F. D. (2020). Leaching and carryover for safrinha corn of the herbicides imazapyr + imazapic in soil under different water conditions. Revista Caatinga, 33, 287–298. https://doi.org/10.1590/1983-21252020v33n202rc

Spark, K. M., & Swift, R. S. (2002). Effect of soil composition and dissolved organic matter on pesticide sorption. Science of The Total Environment, 298(1), 147–161. https://doi.org/10.1016/S0048-9697(02)00213-9

Stocking, M. A., & Murnaghan, N. (2019). A Handbook for the Field Assessment of Land Degradation (1o ed, Vol. 1). Routledge. https://doi.org/10.4324/9781849776219

Taylor, S. L., & Baumert, J. L. (2014). Food Toxicology. Em N. K. Van Alfen (Org.), Encyclopedia of Agriculture and Food Systems (p. 366–380). Academic Press. https://doi.org/10.1016/B978-0-444-52512-3.00064-4

Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture Development, Pesticide Application and Its Impact on the Environment. International Journal of Environmental Research and Public Health, 18(3), 1112. https://doi.org/10.3390/ijerph18031112

Undabeytia, T., Shuali, U., Nir, S., & Rubin, B. (2021). Applications of Chemically Modified Clay Minerals and Clays to Water Purification and Slow Release Formulations of Herbicides. Minerals, 11(1), 9. https://doi.org/10.3390/min11010009

Zhang, H., Yuan, X., Xiong, T., Wang, H., & Jiang, L. (2020). Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chemical Engineering Journal, 398, 125657. https://doi.org/10.1016/j.cej.2020.125657

Published

03/07/2022

How to Cite

SILVA, F. H. K. P. da; ANTUNES, L. F. de S.; VAZ, A. F. de S.; SILVA, M. S. R. de A. da. Pesticides in Brazil: an understanding of the current scenario of use and the properties of the soil that act on the dynamics and retention of these molecules. Research, Society and Development, [S. l.], v. 11, n. 9, p. e7911931614, 2022. DOI: 10.33448/rsd-v11i9.31614. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31614. Acesso em: 10 aug. 2022.

Issue

Section

Agrarian and Biological Sciences