Agrotóxicos no Brasil: uma compreensão do cenário atual de utilização e das propriedades do solo que atuam na dinâmica e retenção destas moléculas
DOI:
https://doi.org/10.33448/rsd-v11i9.31614Palavras-chave:
Agrotóxicos; Meio Ambiente; Biorremediação; Saúde do solo.Resumo
Nas últimas décadas, o Brasil tem apresentado uma tendência de aumento significativo do uso de agrotóxicos. Nesse cenário, como o país é um grande produtor e exportador de alimentos, esse aumento representa um problema ambiental sem precedentes. A ocorrência de agrotóxicos no solo tornou-se um problema ambiental altamente significativo que tem sido agravado pela sua grande utilização em todo mundo e pela ausência de tecnologias de remediação com um bom custo benefício em larga escala. O destino do agrotóxico no solo pode ser afetado por características físicas, químicas e biológicas e pela forma como essas características interagem com os ecossistemas. O presente trabalho teve como objetivo fazer uma análise através de estudos realizados previamente sobre as propriedades físico-químicas do solo que atuam na dinâmica e retenção das moléculas dos agrotóxicos, afim de colaborar para estudos de monitoramento e avaliação que buscam medidas adequadas para o desenvolvimento sustentável e o alcance da neutralidade da degradação do solo.
Referências
Agboola, O. D., & Benson, N. U. (2021). Physisorption and Chemisorption Mechanisms Influencing Micro (Nano) Plastics-Organic Chemical Contaminants Interactions: A Review. Frontiers in Environmental Science, 9. https://www.frontiersin.org/article/10.3389/fenvs.2021.678574
Aguer, J. P., Hermosin, M. C., Calderon, M. J., & Cornejo, J. (2000). Fenuron sorption on homoionic natural and modified smectites. Journal of Environmental Science and Health, Part B, 35(3), 279–296. https://doi.org/10.1080/03601230009373270
Alexander, M. (2000). Aging, Bioavailability, and Overestimation of Risk from Environmental Pollutants. Environmental Science & Technology, 34(20), 4259–4265. https://doi.org/10.1021/es001069+
Alves, O. R., Bandeira, O. A., Borges, A. A., Prado, R. M., & Pasqualetto, A. (2016). Biotecnologias de remediação de solos contaminados com agroquímicos. Agrarian Academy, 3(5), 27–50. https://doi.org/10.18677/Agrarian_Academy_2016_003
Alves, R. E. (2021). A relação entre agricultura, degradação do solo e tempestades de areia. Revista Ayika, 1(1), 50–56. https://www.revistas.uneb.br/index.php/ayika/article/view/13407
Ascough, J. C., Fathelrahman, E. M., & McMaster, G. S. (2008). Insect Pest Models and Insecticide Application. Em S. E. Jørgensen & B. D. Fath (Orgs.), Encyclopedia of Ecology (p. 1978–1985). Academic Press. https://doi.org/10.1016/B978-008045405-4.00208-1
Ballantyne, B. (2003). Toxicology of Fungicides. Em Pesticide Toxicology and International Regulation (Vol. 1, p. 191–303). John Wiley & Sons, Ltd. https://doi.org/10.1002/0470091673.ch6
Barbosa, R. S., Souza, J. P. de, Almeida, D. J. de, Santos, J. B. dos, Paiva, W. dos S., & Porto, M. de J. (2020). As possíveis consequências da exposição a agrotóxicos: Uma revisão sistemática. Research, Society and Development, 9(11), e45191110219–e45191110219. https://doi.org/10.33448/rsd-v9i11.10219
Benoit, P., & Preston, C. M. (2000). Transformation and binding of 13C and 14C-labelled atrazine in relation to straw decomposition in soil. European Journal of Soil Science, 51(1), 43–54. https://doi.org/10.1046/j.1365-2389.2000.00288.x
Bloom, B. M., & Laubach, G. D. (1962). The Relationship Between Chemical Structure and Pharmacological Activity. Annual Review of Pharmacology, 2(1), 67–108. https://doi.org/10.1146/annurev.pa.02.040162.000435
Bolognesi, C., & Merlo, F. D. (2019). Pesticides: Human Health Effects☆. Em J. Nriagu (Org.), Encyclopedia of Environmental Health (Second Edition) (p. 118–132). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.11818-4
Bongue, D., Gaspar, M. da G. de S., Chitombi, A. N., João, P. G., & Ferreira, J. C. (2019). Degradação química do solo da funda. Brazilian Applied Science review, 3(2), 1417–1432. https://doi.org/10.34115/basr.v3i2.1749
Botelho, M. G. L., Pimentel, B. dos S., Furtado, L. G., Lima, M. do C. S., Carneiro, C. R. de O., Batista, V. de A., Marinho, J. L. M., Monteiro, A. L. P. R., Silva, T. P. da, Pontes, A. N., & Costa, M. do S. S. (2020). Agrotóxicos na agricultura: Agentes de danos ambientais e a busca pela agricultura sustentável. Research, Society and Development, 9(8), e396985806–e396985806. https://doi.org/10.33448/rsd-v9i8.5806
Lei N.o 7.802, de 11 de Julho de 1989, no No 7.802, Presidência da República (1989). http://www.planalto.gov.br/ccivil_03/leis/l7802.htm
DECRETO N.o 4.074, DE 4 DE JANEIRO DE 2002, Presidência da República (2002) (testimony of Brasil). http://www.planalto.gov.br/ccivil_03/decreto/2002/d4074.htm
Chaplain, V., Mamy, L., Vieublé-Gonod, L., Mougin, C., Benoit, P., Barriuso, E., & Nélieu, S. (2011). Fate of Pesticides in Soils: Toward an Integrated Approach of Influential Factors. Em Pesticides in the Modern World—Risks and Benefits (1o ed, Vol. 1). IntechOpen. https://doi.org/10.5772/17035
Clausen, L., Fabricius, I., & Madsen, L. (2001). Adsorption of Pesticides onto Quartz, Calcite, Kaolinite, and α-Alumina. Journal of Environmental Quality, 30(3), 846–857. https://doi.org/10.2134/jeq2001.303846x
Correia, F. V., Mercante, F. M., Fabrício, A. C., Campos, T. M. P., JR, E. V., & Langenbach, T. (2007). Adsorção de atrazina em solo tropical sob plantio direto e convencionaL. Pesticidas: r. ecotoxicol. e meio ambiente, 17(1), 37–46. https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/252102/1/10663331321PB.pdf
Correia, N. M. (2018, julho). Comportamento dos herbicidas no ambiente. Comportamento dos herbicidas no ambiente, 1a edição, 30. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/185779/1/DOC-160.pdf
CORREIA, N. M. (2021). Herbicidas (Proteção química da lavoura, p. 48–58) [Informe Agropecuário]. EPAMIG. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/232043/1/Nubia-Protecao-quimica-da-lavoura.pdf
Costa, L. G. (2015). Chapter 9—The neurotoxicity of organochlorine and pyrethroid pesticides. Em M. Lotti & M. L. Bleecker (Orgs.), Handbook of Clinical Neurology (Vol. 131, p. 135–148). Elsevier. https://doi.org/10.1016/B978-0-444-62627-1.00009-3
Dijkgraaf, E., & Vollebergh, H. R. J. (2004). Burn or bury? A social cost comparison of final waste disposal methods. Ecological Economics, 50(3), 233–247. https://doi.org/10.1016/j.ecolecon.2004.03.029
Dominati, E., Mackay, A., Green, S., & Patterson, M. (2014). A soil change-based methodology for the quantification and valuation of ecosystem services from agro-ecosystems: A case study of pastoral agriculture in New Zealand. Ecological Economics, 100(1), 119–129. https://doi.org/10.1016/j.ecolecon.2014.02.008
Eevers, N., Hawthorne, J. R., White, J. C., Vangronsveld, J., & Weyens, N. (2016). Exposure of Cucurbita pepo to DDE-contamination alters the endophytic community: A cultivation dependent vs a cultivation independent approach. Environmental Pollution, 209, 147–154. https://doi.org/10.1016/j.envpol.2015.11.038
Eevers, N., White, J. C., Vangronsveld, J., & Weyens, N. (2017). Bio- and Phytoremediation of Pesticide-Contaminated Environments: A Review. Em A. Cuypers & J. Vangronsveld (Orgs.), Advances in Botanical Research (Vol. 83, p. 277–318). Academic Press. https://doi.org/10.1016/bs.abr.2017.01.001
EMBRAPA. (2006, setembro). Época de aplicação dos herbicidas. Documentos Online. http://www.cnpt.embrapa.br/biblio/do/p_do62_11.htm
FAO. (2015). Healthy soils are the basis for healthy food production (p. 4). Food and Agriculture Organization of the United Nations. https://www.fao.org/documents/card/en/c/645883cd-ba28-4b16-a7b8-34babbb3c505/
FAO. (2022). FAO Soils Portal. Food and Agriculture Organization of the United Nations. https://www.fao.org/soils-portal/about/all-definitions/en/
Farenhorst, A. (2006). Importance of Soil Organic Matter Fractions in Soil-Landscape and Regional Assessments of Pesticide Sorption and Leaching in Soil. Soil Science Society of America Journal, 70(3), 1005–1012. https://doi.org/10.2136/sssaj2005.0158
Ferreira, C. S. S., Seifollahi-Aghmiuni, S., Destouni, G., Ghajarnia, N., & Kalantari, Z. (2022). Soil degradation in the European Mediterranean region: Processes, status and consequences. Science of The Total Environment, 805, 150106. https://doi.org/10.1016/j.scitotenv.2021.150106
Gavrilescu, M. (2009, setembro 1). Emerging processes for soil and groundwater cleanup—Potential benefits and risks. Environmental Engineering and Management Journal, 8(1), 16. https://www.researchgate.net/publication/289159824_Emerging_processes_for_soil_and_groundwater_cleanup_-_Potential_benefits_and_risks
Gebler, L., Espanhol, G. L., Firta, I. N., & Spadotto, C. A. (2007). Dispersão de poluentes e seu monitoramento na agropecuária. Em Gestão ambiental na agropecuária (Vol. 2, p. 105–166). Embrapa Uva e Vinho. http://www.alice.cnptia.embrapa.br/handle/doc/11870
Gilani, R. A., Rafique, M., Rehman, A., Munis, M. F. H., Rehman, S. ur, & Chaudhary, H. J. (2016). Biodegradation of chlorpyrifos by bacterial genus Pseudomonas. 56(1), 105–119. https://doi.org/10.1002/jobm.201500336
Gonçalves, C. R., & Delabona, P. da S. (2022). Strategies for bioremediation of pesticides: Challenges and perspectives of the Brazilian scenario for global application – A review. Environmental Advances, 8, 100220. https://doi.org/10.1016/j.envadv.2022.100220
Gupta, P. K. (2018). Chapter 45—Toxicity of Fungicides. Em R. C. Gupta (Org.), Veterinary Toxicology (Third Edition) (p. 569–580). Academic Press. https://doi.org/10.1016/B978-0-12-811410-0.00045-3
Haimi, J. (2000). Decomposer animals and bioremediation of soils. Environmental Pollution, 107(2), 233–238. https://doi.org/10.1016/S0269-7491(99)00142-6
Han, L., Zhao, D., & Li, C. (2015). Isolation and 2,4-D-degrading characteristics of Cupriavidus campinensis BJ71. Brazilian Journal of Microbiology, 46(1), 433–441. https://doi.org/10.1590/S1517-838246220140211
Hatfield, J. L., Sauer, T. J., & Cruse, R. M. (2017). Chapter One - Soil: The Forgotten Piece of the Water, Food, Energy Nexus. Em D. L. Sparks (Org.), Advances in Agronomy (Vol. 143, p. 1–46). Academic Press. https://doi.org/10.1016/bs.agron.2017.02.001
Hong, Q., Zhang, Z., Hong, Y., & Li, S. (2007). A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. International Biodeterioration & Biodegradation, 59(1), 55–61. https://doi.org/10.1016/j.ibiod.2006.07.013
Hussain, S., Siddique, T., Arshad, M., & Saleem, M. (2009). Bioremediation and Phytoremediation of Pesticides: Recent Advances. Critical Reviews in Environmental Science and Technology, 39(10), 843–907. https://doi.org/10.1080/10643380801910090
IBAMA. (2021). Relatórios de comercialização de agrotóxicos. IBAMA - Ministério do Meio Ambiente. http://www.ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos
IBGE. (2017). IBGE, 2017. IBGE - Censo Agro 2017. https://censoagro2017.ibge.gov.br//2013-agencia-de-noticias/releases/25789-censo-agro-2017-populacao-ocupada-nos-estabelecimentos-agropecuarios-cai-8-8.html
Islas-García, A., Vega-Loyo, L., Aguilar-López, R., Xoconostle-Cázares, B., & Rodríguez-Vázquez, R. (2015). Evaluation of hydrocarbons and organochlorine pesticides and their tolerant microorganisms from an agricultural soil to define its bioremediation feasibility. Journal of Environmental Science and Health, Part B, 50(2), 99–108. https://doi.org/10.1080/03601234.2015.975605
Jan, A. T., Azam, M., Ali, A., & Haq, Q. Mohd. R. (2014). Prospects for Exploiting Bacteria for Bioremediation of Metal Pollution. Critical Reviews in Environmental Science and Technology, 44(5), 519–560. https://doi.org/10.1080/10643389.2012.728811
Javaid, M. K., Ashiq, M., & Tahir, M. (2021). Potential of Biological Agents in Decontamination of Agricultural Soil. Scientifica, 2016(1), 5. https://doi.org/10.1155/2016/1598325
Javanbakht, V., Alavi, S. A., & Zilouei, H. (2013). Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Science and Technology, 69(9), 1775–1787. https://doi.org/10.2166/wst.2013.718
Jobby, R., Jha, P., Yadav, A. K., & Desai, N. (2018). Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere, 207(1), 255–266. https://doi.org/10.1016/j.chemosphere.2018.05.050
Kah, M., & Brown, C. D. (2006). Adsorption of ionisable pesticides in soils. Reviews of Environmental Contamination and Toxicology, 188, 149–217. Scopus. https://doi.org/10.1007/978-0-387-32964-2_5
Karlik, J. F. (2003). INSECTS AND OTHER ANIMALS | Insecticides. Em A. V. Roberts (Org.), Encyclopedia of Rose Science (p. 460–466). Elsevier. https://doi.org/10.1016/B0-12-227620-5/00157-9
Lilburne, L., Eger, A., Mudge, P., Ausseil, A.-G., Stevenson, B., Herzig, A., & Beare, M. (2020). The Land Resource Circle: Supporting land-use decision making with an ecosystem-service-based framework of soil functions. Geoderma, 363, 114134. https://doi.org/10.1016/j.geoderma.2019.114134
Liu, Y., Lonappan, L., Brar, S. K., & Yang, S. (2018). Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review. Science of The Total Environment, 645, 60–70. https://doi.org/10.1016/j.scitotenv.2018.07.099
Lopes, A. R., Danko, A. S., Manaia, C. M., & Nunes, O. C. (2013). Molinate biodegradation in soils: Natural attenuation versus bioaugmentation. Applied Microbiology and Biotechnology, 97(6), 2691–2700. https://doi.org/10.1007/s00253-012-4096-y
MAPA. (2022, março 4). Informações técnicas. Ministério da Agricultura, Pecuária e Abastecimento. https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/agrotoxicos/informacoes-tecnicas
Marchi, G., Santos, E. C., & Guimarães, T. G. (2008, outubro). Herbicidas: Mecanismos de ação e uso. EMBRAPA, 1(1a edição), 34. https://www.infoteca.cnptia.embrapa.br/bitstream/doc/571939/1/doc227.pdf
Martínez-Escudero, C. M., Garrido, I., Flores, P., Hellín, P., Contreras-López, F., & Fenoll, J. (2022). Remediation of triazole, anilinopyrimidine, strobilurin and neonicotinoid pesticides in polluted soil using ozonation and solarization. Journal of Environmental Management, 310, 114781. https://doi.org/10.1016/j.jenvman.2022.114781
Massoud, M., Saad, A., Abdel-Megeed, A., Mourad, A., Barakat, A., & Hamid, N. (2013). Bacterial Strains from the Rhizosphere for Remediation of Certain Pesticides. Bacterial Strains from the Rhizosphere for Remediation of Certain Pesticides, 15(4), 16. https://www.researchgate.net/profile/Ahmed-Abdel-Megeed/publication/234013513_Bacterial_Satains/links/02bfe50e417e5f0703000000/Bacterial-Satains.pdf
McGuinness, M., & Dowling, D. (2009). Plant-Associated Bacterial Degradation of Toxic Organic Compounds in Soil. International Journal of Environmental Research and Public Health, 6(8), 2226–2247. https://doi.org/10.3390/ijerph6082226
Moraes, R. F. (2019). TD 2506—Agrotóxicos no Brasil: Padrões de uso, política da regulação e prevenção da captura regulatória. IPEA - Instituto de Pesquisa Econômica Aplicada. https://www.ipea.gov.br/portal/index.php?option=com_content&view=article&id=35016:td-2506-agrotoxicos-no-brasil-padroes-de-uso-politica-da-regulacao-e-prevencao-da-captura-regulatoria&catid=419:2019&directory=1
Müller, F., Ackermann, P., & Margot, P. (2010). Fungicides, Agricultural. Em Wiley-VCH Verlag GmbH & Co. KGaA (Org.), Ullmann’s Encyclopedia of Industrial Chemistry (p. a12_085.pub2). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/14356007.a12_085.pub2
Navarro, L., Camacho, R., López, J. E., & Saldarriaga, J. F. (2021). Assessment of the potential risk of leaching pesticides in agricultural soils: Study case Tibasosa, Boyacá, Colombia. Heliyon, 7(11), e08301. https://doi.org/10.1016/j.heliyon.2021.e08301
Nowak, K. M., Girardi, C., Miltner, A., Gehre, M., Schäffer, A., & Kästner, M. (2013). Contribution of microorganisms to non-extractable residue formation during biodegradation of ibuprofen in soil. Science of The Total Environment, 445–446, 377–384. https://doi.org/10.1016/j.scitotenv.2012.12.011
Ochoa, V., & Maestroni, B. (2018). Chapter 9—Pesticides in Water, Soil, and Sediments. Em B. Maestroni & A. Cannavan (Orgs.), Integrated Analytical Approaches for Pesticide Management (p. 133–147). Academic Press. https://doi.org/10.1016/B978-0-12-816155-5.00009-9
OECD. (2000). Test No. 106: Adsorption - Desorption Using a Batch Equilibrium Method (Guidelines for the Testing of Chemicals No 106; Physical-Chemical Properties, p. 44). OECD. https://www.oecd-ilibrary.org/environment/test-no-106-adsorption-desorption-using-a-batch-equilibrium-method_9789264069602-en
Ojuederie, O. B., & Babalola, O. O. (2017). Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review. International Journal of Environmental Research and Public Health, 14(12), 1504. https://doi.org/10.3390/ijerph14121504
Okeke, B. C., Siddique, T., Arbestain, M. C., & Frankenberger, W. T. (2002). Biodegradation of γ-Hexachlorocyclohexane (Lindane) and α-Hexachlorocyclohexane in Water and a Soil Slurry by a Pandoraea Species. Journal of Agricultural and Food Chemistry, 50(9), 2548–2555. https://doi.org/10.1021/jf011422a
Oliveira, J., Lima, A., Minini, D., & Silva, E. (2018). Usos, efeitos e potencial tóxico dos agrotóxicos na qualidade do solo. Agrarian Academy, 5(9). https://doi.org/10.18677/Agrarian_Academy_2018a45
Oliveira, M. F., & Brighenti, A. M. (2018). Controle de plantas daninhas: Métodos físico, mecânico, cultural, biológico e alelopatia (1o ed, Vol. 1). https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1103281/controle-de-plantas-daninhas-metodos-fisico-mecanico-cultural-biologico-e-alelopatia
Oliveira, M., Frihling, B. E. F., Velasques, J., Filho, F. J. C. M., Cavalheri, P. S., & Migliolo, L. (2020). Pharmaceuticals residues and xenobiotics contaminants: Occurrence, analytical techniques and sustainable alternatives for wastewater treatment. Science of The Total Environment, 705, 135568. https://doi.org/10.1016/j.scitotenv.2019.135568
Pascal-Lorber, S., & Laurent, F. (2011). Phytoremediation Techniques for Pesticide Contaminations. Em E. Lichtfouse (Org.), Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation (Vol. 1, p. 77–105). Springer Netherlands. https://doi.org/10.1007/978-94-007-0186-1_4
Peña, A., Delgado-Moreno, L., & Rodríguez-Liébana, J. A. (2020). A review of the impact of wastewater on the fate of pesticides in soils: Effect of some soil and solution properties. Science of The Total Environment, 718, 134468. https://doi.org/10.1016/j.scitotenv.2019.134468
Raimondo, E. E., Saez, J. M., Aparicio, J. D., Fuentes, M. S., & Benimeli, C. S. (2020). Bioremediation of lindane-contaminated soils by combining of bioaugmentation and biostimulation: Effective scaling-up from microcosms to mesocosms. Journal of Environmental Management, 276, 111309. https://doi.org/10.1016/j.jenvman.2020.111309
Rasool, S., Rasool, T., & Gani, K. M. (2022). A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chemical Engineering Journal Advances, 100301. https://doi.org/10.1016/j.ceja.2022.100301
Reis, R. R., Sampaio, S. C., & de Melo, E. B. (2014). An alternative approach for the use of water solubility of nonionic pesticides in the modeling of the soil sorption coefficients. Water Research, 53, 191–199. https://doi.org/10.1016/j.watres.2014.01.023
Rezende-Teixeira, P., Dusi, R. G., Jimenez, P. C., Espindola, L. S., & Costa-Lotufo, L. V. (2022). What can we learn from commercial insecticides? Efficacy, toxicity, environmental impacts, and future developments. Environmental Pollution, 300, 118983. https://doi.org/10.1016/j.envpol.2022.118983
Rossetti, M. F., Stoker, C., & Ramos, J. G. (2020). Agrochemicals and neurogenesis. Molecular and Cellular Endocrinology, 510, 110820. https://doi.org/10.1016/j.mce.2020.110820
Saljnikov, E., Mueller, L., Lavrishchev, A., & Eulenstein, F. (Orgs.). (2022). Advances in Understanding Soil Degradation. Springer International Publishing. https://doi.org/10.1007/978-3-030-85682-3
Saravanan, A., Kumar, P. S., Jeevanantham, S., Anubha, M., & Jayashree, S. (2022a). Degradation of toxic agrochemicals and pharmaceutical pollutants: Effective and alternative approaches toward photocatalysis. Environmental Pollution, 298, 118844. https://doi.org/10.1016/j.envpol.2022.118844
Saravanan, A., Kumar, P. S., Jeevanantham, S., Anubha, M., & Jayashree, S. (2022b). Degradation of toxic agrochemicals and pharmaceutical pollutants: Effective and alternative approaches toward photocatalysis. Environmental Pollution, 298, 118844. https://doi.org/10.1016/j.envpol.2022.118844
Sarkar, B., Mukhopadhyay, R., Mandal, A., Mandal, S., Vithanage, M., & Biswas, J. K. (2020). Chapter 8—Sorption and desorption of agro-pesticides in soils. Em M. N. V. Prasad (Org.), Agrochemicals Detection, Treatment and Remediation (p. 189–205). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-08-103017-2.00008-8
Scherer Roman, E., Vargas, L., Antonio Rizzardi, M., Hall, L., Beckie, H., & M. Wolf, T. (2005). Como funcionam os herbicidas da biologia à aplicação (21. ed). Gráfica Editora Berthier. http://www.bdpa.cnptia.embrapa.br/consulta/busca?b=pc&id=821542&biblioteca=vazio&busca=autoria%5C:%22RIZZARDI,%20M.%22&qFacets=autoria%5C:%22RIZZARDI,%20M.%22&sort=&paginacao=t&paginaAtual=1
Schroll, R., Becher, H. H., Dörfler, U., Gayler, S., Grundmann, S., Hartmann, H. P., & Ruoss, J. (2006). Quantifying the Effect of Soil Moisture on the Aerobic Microbial Mineralization of Selected Pesticides in Different Soils. Environmental Science & Technology, 40(10), 3305–3312. https://doi.org/10.1021/es052205j
Shaheen, I., Ahmad, K. S., & Zahra, T. (2019). Evaluating the fate of agrochemical through adsorption and desorption studies of chlorfluazuron in selected agricultural soils. Journal of King Saud University - Science, 31(4), 612–617. https://doi.org/10.1016/j.jksus.2017.12.005
Shiratsuchi, L. S., & Fontes, J. R. A. (2002, dezembro 1). Tecnologia de Aplicação de Herbicidas. Tecnologia de Aplicação de Herbicidas, 78(1), 30. https://ainfo.cnptia.embrapa.br/digital/bitstream/CPAC-2009/25620/1/doc_78.pdf
Silva, C. C., Souza, M. de F., Passos, A. B. R. de J., Silva, T. S., Borges, M. P. da S., dos Santos, M. S., & Silva, D. V. (2022). Risk of environmental contamination due to the hexazinone application in agricultural soils in northeastern Brazil. Geoderma Regional, 28, e00481. https://doi.org/10.1016/j.geodrs.2022.e00481
SILVA, C. M. M. S., FAY, E. F., & VIEIRA, R. F. (2007, maio 24). Efeito dos fungicidas metalaxil e fenarimol na microbiota do solo. - Portal Embrapa. Pesticidas: Revista de Ecotoxicologia e Meio Ambiente, 15(1), 93–104. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/15476/efeito-dos-fungicidas-metalaxil-e-fenarimol-na-microbiota-do-solo
Singh, B. K., Walker, A., & Wright, D. J. (2006). Bioremedial potential of fenamiphos and chlorpyrifos degrading isolates: Influence of different environmental conditions. Soil Biology and Biochemistry, 38(9), 2682–2693. https://doi.org/10.1016/j.soilbio.2006.04.019
Sorensen, S. R., & Aamand, J. (2001). Biodegradation of the Phenylurea Herbicide Isoproturon and its Metabolites in Agricultural Soils. Biodegradation, 12(1), 69–77. https://doi.org/10.1023/A:1011902012131
Souza, A. D. S., Leal, J. F. L., Langaro, A. C., Carvalho, G. S. D., & Pinho, C. F. D. (2020). Leaching and carryover for safrinha corn of the herbicides imazapyr + imazapic in soil under different water conditions. Revista Caatinga, 33, 287–298. https://doi.org/10.1590/1983-21252020v33n202rc
Spark, K. M., & Swift, R. S. (2002). Effect of soil composition and dissolved organic matter on pesticide sorption. Science of The Total Environment, 298(1), 147–161. https://doi.org/10.1016/S0048-9697(02)00213-9
Stocking, M. A., & Murnaghan, N. (2019). A Handbook for the Field Assessment of Land Degradation (1o ed, Vol. 1). Routledge. https://doi.org/10.4324/9781849776219
Taylor, S. L., & Baumert, J. L. (2014). Food Toxicology. Em N. K. Van Alfen (Org.), Encyclopedia of Agriculture and Food Systems (p. 366–380). Academic Press. https://doi.org/10.1016/B978-0-444-52512-3.00064-4
Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture Development, Pesticide Application and Its Impact on the Environment. International Journal of Environmental Research and Public Health, 18(3), 1112. https://doi.org/10.3390/ijerph18031112
Undabeytia, T., Shuali, U., Nir, S., & Rubin, B. (2021). Applications of Chemically Modified Clay Minerals and Clays to Water Purification and Slow Release Formulations of Herbicides. Minerals, 11(1), 9. https://doi.org/10.3390/min11010009
Zhang, H., Yuan, X., Xiong, T., Wang, H., & Jiang, L. (2020). Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chemical Engineering Journal, 398, 125657. https://doi.org/10.1016/j.cej.2020.125657
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Francinne Hellora Kaczurowski Pereira da Silva; Luiz Fernando de Sousa Antunes; André Felipe de Sousa Vaz; Maura Santos Reis de Andrade da Silva
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.