Edible sprouts: Nutritional quality, microbiological safety and potential application in new products

Authors

DOI:

https://doi.org/10.33448/rsd-v11i9.31870

Keywords:

Germination; Phenolic compounds; Pathogenic microorganisms; Development of new products; Healthier foods.

Abstract

Edible sprouts are a good source of nutrients and have been consumed for about 5000 years by the people of the East, and can be obtained in a few days after germination, which requires little space and inputs. Thus, the present work sought to verify the main bioactive compounds present in different types of edible sprouts, the influence of germination on the content of these compounds, the main organisms associated with contamination by these foods and their potential application for the development of new products. For this, an integrative literature review was developed, with articles published in the Web of Science, Scopus, Google Scholar and Scielo databases. It was identified that the main bioactive compounds in these foods are phenolic compounds, glucosinolates, vitamin (C, B, E and D), minerals (Ca+2, Mg+2, K+, Na+, Fe+2, Zn+2, Cu+2 and Mn+2) and aminobutyric acid. The studies that applied treatments such as ultrasound election, jasmonic acid (JA), NaCl and glucose solutions, an increase in the content of bioactive compounds present in the sprouts was observed. Regarding the main microorganisms associated with contamination by these foods, they are pathogens such as Salmonella spp., Escherichia coli and Staphylococcus aureus, but with the application of physical treatments such as bleaching, ultrasound, cooling and irradiation, and based on chemical reagents such as methyl jasmonate (JA), salicylic acid and tocopherol, proved to be effective in controlling these microorganisms. Finally, the sprouts were applied with the aim of nutritionally enriching products such as pasta and beverages.

References

Abellán, Á., Domínguez-Perles, R., Moreno, D A., & García-Viguera, C. (2019). Sorting out the Value of Cruciferous Sprouts as Sources of Bioactive Compounds for Nutrition and Health. Nutrients, 11(2), 429. doi: 10.3390/nu11020429

Aguilera, Y., Díaz, M. F., Jiménez, T., Benítez, V., Herrera, T. ... Martín-Cabrejas, M. A. (2013). Changes in nonnutritional factors and antioxidant activity during germination of nonconventional legumes. Journal of Agricultural and Food Chemistry, 61(34), 8120-8125. doi: 10.1021/jf4022652

Aguilera, Y., Rebollo-Hernanz, M., Herrera, T., Cayuelas, L. T., Rodríguez-Rodríguez, P. ... Martin-Cabrejas, M. A. (2016). Intake of bean sprouts influences melatonin and antioxidant capacity biomarker levels in rats. Food Functions, 7(3), 1438-1445. doi: 10.1039/c5fo01538c

Al-Qabba, M. M., El-Mowafy, M. A., Althwab, S. A., Alfheeaid, H. A., Aljutaily, T., & Barakat, H. (2020). Phenolic Profile, Antioxidant Activity, and Ameliorating Efficacy of Chenopodium quinoa Sprouts against CCl4-Induced Oxidative Stress in Rats. Nutrients, 12(10), 2904. doi:10.3390/nu12102904

Ampofo, J., Ngadi, M., & Ramaswamy, H. S. (2020). The Impact of Temperature Treatments on Elicitation of the Phenylpropanoid Pathway, Phenolic Accumulations and Antioxidative Capacities of Common Bean (Phaseolus vulgaris) Sprouts. Food and Bioprocess Technology, 13(9), 1544-1555. doi: 10.1007/s11947-020-02496-9

Ampofo, J. O., & Ngadi, M. (2020). Ultrasonic assisted phenolic elicitation and antioxidant potential of common bean (Phaseolus vulgaris) sprouts. Ultrasonics Sonochemistry, 64, 104974. doi: https://doi.org/10.1016/j.ultsonch.2020.104974

Aphalo, P., Martínez, E. N., & Añón, M. C. (2015). Amaranth Sprouts: A Potential Health Promoting and Nutritive Natural Food. International Journal of Food Properties, 18(12), 2688-2698. doi: 10.1080/10942912.2015.1004585

Baenas, N., Moreno, D. A., & García-Viguera, C. (2012). Selecting sprouts of brassicaceae for optimum phytochemical composition. Journal of Agricultural and Food Chemistry, 60(45), 11409-11420. doi: 10.1021/jf302863c

Baenas, N., García-Viguera, C., & Moreno, D. A. (2014). Biotic Elicitors Effectively Increase the Glucosinolates Content in Brassicaceae Sprouts. Journal of Agricultural and Food Chemistry, 62(8), 1881-1889. doi: 10.1021/jf404876z

Baenas, N., Gómez-Jodar, I., Moreno, D. A., García-Viguera, C., & Periago, P. M. (2017). Broccoli and radish sprouts are safe and rich in bioactive phytochemicals. Postharvest Biology and Technology, 127, 60-67. doi: https://doi.org/10.1016/j.postharvbio.2017.01.010

Baenas, N., Villaño, D., García-Viguera, C., & Moreno, D. A. (2016). Optimizing elicitation and seed priming to enrich broccoli and radish sprouts in glucosinolates. Food Chemistry, 204, 314-319. doi: https://doi.org/10.1016/j.foodchem.2016.02.144

Beaulieu, J. C., Reed, S. S., Obando-Ulloa, J. M., Boue, S. M., & Cole, M. R. (2020). Green Processing, Germinating and Wet Milling Brown Rice (Oryza sativa) for Beverages: Physicochemical Effects. Foods, 9(8), 1016. doi:10.3390/foods9081016

Bell, L., Lignou, S., & Wagstaff, C. (2020). High Glucosinolate Content in Rocket Leaves (Diplotaxis tenuifolia and Eruca sativa) after Multiple Harvests Is Associated with Increased Bitterness, Pungency, and Reduced Consumer Liking. Foods, 9(12), 1799. doi:10.3390/foods9121799

Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F., & Galieni, A. (2019). Sprouted Grains: A Comprehensive Review. Nutrients, 11(2), 421. doi:10.3390/nu11020421

Bentsink, L., & Koornneef, M. (2008). Seed dormancy and germination. The arabidopsis book, 6, e0119-e0119. doi: 10.1199/tab.0119

Bochnak-Niedźwiecka, J., Szymanowska, U., & Świeca, M. (2020). Studies on the development of vegetable-based powdered beverages – Effect of the composition and dispersing temperature on potential bioaccessibility of main low-molecular antioxidants and antioxidant properties. LWT, 131, 109822. doi: https://doi.org/10.1016/j.lwt.2020.109822

Butkutė, B., Taujenis, L., & Norkevičienė, E. (2018). Small-Seeded Legumes as a Novel Food Source. Variation of Nutritional, Mineral and Phytochemical Profiles in the Chain: Raw Seeds-Sprouted Seeds-Microgreens. Molecules (Basel, Switzerland), 24(1), 133. doi: 10.3390/molecules24010133

Cevallos-Casals, B. A., & Cisneros-Zevallos, L. (2010). Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chemistry, 119(4), 1485-1490. doi: https://doi.org/10.1016/j.foodchem.2009.09.030

CIDRAP. (2005). Center for Infectious Disease Research and Policy. Sprouts blamed in big Ontario Salmonella outbreak. Retirado 20 Mar, 2021, de: https://www.cidrap.umn.edu/news-perspective/2005/12/sprouts-blamed-big-ontario-salmonella-outbreak

Ciska, E., Drabińska, N., Honke, J., & Narwojsz, A. (2015). Boiled Brussels sprouts: A rich source of glucosinolates and the corresponding nitriles. Journal of Functional Foods, 19, 91-99. doi: https://doi.org/10.1016/j.jff.2015.09.008

Ciska, E., Honke, J., & Kozłowska, H. (2008). Effect of Light Conditions on the Contents of Glucosinolates in Germinating Seeds of White Mustard, Red Radish, White Radish, and Rapeseed. Journal of Agricultural and Food Chemistry, 56(19), 9087-9093. doi: 10.1021/jf801206g

Coello, K. E., Frias, J., Martínez-Villaluenga, C., Cartea, M. E., Abilleira, R., & Peñas, E. (2020). Potential of Germination in Selected Conditions to Improve the Nutritional and Bioactive Properties of Moringa (Moringa oleifera L.). Foods, 9(11), 1639. doi:10.3390/foods9111639

Comas-Basté, O., Latorre-Moratalla, M. L., Rabell-González, J., Veciana-Nogués, M. T., & Vidal-Carou, M. C.. (2020). Lyophilised legume sprouts as a functional ingredient for diamine oxidase enzyme supplementation in histamine intolerance. LWT, 125, 109201. doi: https://doi.org/10.1016/j.lwt.2020.109201

Costa, A. S. (2012). Síndrome de Münchausen por procuração: uma revisão integrativa (Trabalho de Conclusão de Curso). Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil. Retirado Nov 16, 2022 de: https://www.lume.ufrgs.br/bitstream/handle/10183/55277/000856921.pdf?sequence=1

Czarniecka-Skubina, E. (2002). Effect of the material form, storage and cooking methods on the quality of brussels sprouts. Polish Journal of Food and Nutrition Sciences, 52(3), 75-82. Retirado de: https://www.infona.pl/resource/bwmeta1.element.agro-3e569f84-0187-43fd-86dd-1a5e2829a398

Ding, H., Fu, T. J., & Smith, M. A. (2013). Microbial contamination in sprouts: How effective is seed disinfection treatment? Journal of Food Science, 0(0), 1-7. doi: 10.1111/1750-3841.12064

Dosz, E. B., Ku, K.-M., Juvik, J. A., & Jeffery, E. H. (2014). Total Myrosinase Activity Estimates in Brassica Vegetable Produce. Journal of Agricultural and Food Chemistry, 62(32), 8094-8100. doi: 10.1021/jf501692c

Drozdowska, M., Leszczyńska, T., Koronowicz, A., Piasna-Słupecka, E., Domagala, D., & Kusznierewicz, B. (2020). Young shoots of red cabbage are a better source of selected nutrients and glucosinolates in comparison to the vegetable at full maturity. European Food Research and Technology, 246(12), 2505-2515. doi: 10.1007/s00217-020-03593-x

Fenwick, G. R., Heaney, R. K., Mullin, W. J., & VanEtten, C. H. (1983). Glucosinolates and their breakdown products in food and food plants. C R C Critical Reviews in Food Science and Nutrition, 18(2), 123-201. doi: 10.1080/10408398209527361

Fischer, S., Wilckens, R., Jara, J., Aranda, M., Valdivia, W. ... Obal, I. (2017). Protein and antioxidant composition of quinoa (Chenopodium quinoa Willd.) sprout from seeds submitted to water stress, salinity and light conditions. Industrial Crops and Products, 107, 558-564. doi: https://doi.org/10.1016/j.indcrop.2017.04.035

Fusani, P., Piwowarski, J. P., Zidorn, C., Kiss, A. K., Scartezzini, F., & Granica, S. (2016). Seasonal variation in secondary metabolites of edible shoots of Buck’s beard [Aruncus dioicus (Walter) Fernald (Rosaceae)]. Food Chemistry, 202, 23-30. doi: https://doi.org/10.1016/j.foodchem.2016.01.103

Galanakis, C. M. (2020a). The Food Systems in the Era of the Coronavirus (COVID-19) Pandemic Crisis. Foods, 9(4), 523. doi:10.3390/foods9040523

Galanakis, C. M., Aldawoud, T. M. S., Rizou, M., Rowan, N, J., & Ibrahim, S. A. (2020b). Food Ingredients and Active Compounds against the Coronavirus Disease (COVID-19) Pandemic: A Comprehensive Review. Foods (Basel, Switzerland), 9(11), 1701. doi: 10.3390/foods9111701

Gan, R.-Y., Lui, W.-Y., Wu, K., Chan, C.-L., & Corke, H. (2017a). Hot Air Drying Induces Browning and Enhances Phenolic Content and Antioxidant Capacity in Mung Bean (Vigna radiata L.) Sprouts. Journal of Food Processing and Preservation, 41(1), e12846. doi: https://doi.org/10.1111/jfpp.12846

Gan, R.-Y., Lui, W.-Y., Wu, K., Chan, C.-L., Dai, S.-H. … Harold, C. (2017b). Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends in Food Science & Technology, 59, 1-14. doi: https://doi.org/10.1016/j.tifs.2016.11.010

Glibowski, P. (2009). Rheological properties and structure of inulin–whey protein gels. International Dairy Journal, 19(8), 443-449. doi: https://doi.org/10.1016/j.idairyj.2009.03.011

Guo, R., Hou, Q., Yuan, G., Zhao, Y., & Wang, Q. (2014). Effect of 2, 4-epibrassinolide on main health-promoting compounds in broccoli sprouts. LWT - Food Science and Technology, 58(1), 287-292. doi: https://doi.org/10.1016/j.lwt.2014.02.047

Hanschen, F. S., Platz, S., Mewis, I., Schreiner, M., Rohn, S., & Kroh, L. W. (2012). Thermally Induced Degradation of Sulfur-Containing Aliphatic Glucosinolates in Broccoli Sprouts (Brassica oleracea var. italica) and Model Systems. Journal of Agricultural and Food Chemistry, 60(9), 2231-2241. doi: 10.1021/jf204830p

Harris, L. J., Farber, J. N., Beuchat, L. R., Parish, M. E., Suslow, T. V. … & Busta, F. F. (2003). Outbreaks Associated with Fresh Produce: Incidence, Growth, and Survival of Pathogens in Fresh and Fresh-Cut Produce. Comprehensive Reviews in Food Science and Food Safety, 2(s1), 78-141. doi: https://doi.org/10.1111/j.1541-4337.2003.tb00031.x

Hassan, S., Ahmad, N., Ahmad, T., Imran, M., Xu, C., & Khan, M. K. (2019). Microwave processing impact on the phytochemicals of sorghum seeds as food ingredient. Journal of Food Processing and Preservation, 43(5), e13924. doi: https://doi.org/10.1111/jfpp.13924

Hassini, I., Baenas, N., Moreno, D. A., Carvajal, M., Boughanmi, N., & Martinez Ballesta, M. D. C. (2017). Effects of seed priming, salinity and methyl jasmonate treatment on bioactive composition of Brassica oleracea var. capitata (white and red varieties) sprouts. Journal of the Science Food and Agriculture, 97(8), 2291-2299. doi: 10.1002/jsfa.8037

Kim, S.-J., Zaidul, I. S. M., Maeda, T., Suzuki, T., Hashimoto, N., Takigawa, S. … & Yamauchi, H. (2007). A time-course study of flavonoids in the sprouts of tartary (Fagopyrum tataricum Gaertn.) buckwheats. Scientia Horticulturae, 115(1), 13-18. doi: https://doi.org/10.1016/j.scienta.2007.07.018

Kim, S.-J., Zaidul, I. S. M., Suzuki, T., Mukasa, Y., Hashimoto, N., Takigawa, S., Noda, T., Matsuura- Endo, C., & Yamauchi, H. (2008). Comparison of phenolic compositions between common and tartary buckwheat (Fagopyrum) sprouts. Food Chemistry, 110(4), 814-820. doi: 10.1016/j.foodchem.2008.02.050

Koodkaew, I. (2019). NaCl and glucose improve health-promoting properties in mung bean sprouts. Scientia Horticulturae, 247, 235-241. https://doi.org/10.1016/j.scienta.2018.12.022

Ku, K. M., Jeffery, E. H., & Juvik, J. A. (2014). Optimization of methyl jasmonate application to broccoli florets to enhance health-promoting phytochemical content. Journal of the Science Food and Agriculture, 94(10), 2090-2096. doi: 10.1002/jsfa.6529

Kuabara, C. T. M., Sales, P. R. S., Marin, M. J. S., & Tonhon, S. F. R. (2014). Integração ensino e serviços de saúde: uma revisão integrativa da literatura. Revista Mineira de Enfermagem, 18(1), 195-201. doi: 10.5935/1415-2762.20140015

Kumar, S., & Gautam, S. (2019). A combination process to ensure microbiological safety, extend storage life and reduce anti-nutritional factors in legume sprouts. Food Bioscience, 27, 18-29. doi: https://doi.org/10.1016/j.fbio.2018.11.005

Le, T. N., Chiu, C.-H., & Hsieh, P.-C. (2020). Bioactive Compounds and Bioactivities of Brassica oleracea L. var. italica Sprouts and Microgreens: An Updated Overview from a Nutraceutical Perspective. Plants, 9(8), 946. doi: 10.3390/plants9080946

Lee, Y.-K., Mijan, M. A., Ganesan, P., Yoo, S.-H., & Kwak, H.-S. (2013). The physicochemical properties of yoghurt supplemented with microencapsulated peanut sprout extract, a possible functional ingredient. International Journal of Dairy Technology, 66, 417-423. doi: 10.1111/1471-0307.12047

Li, Z., Yu, J., Peng, Y., & Huang, B. (2016). Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera). Scientific Reports, 6, 30338. doi: 10.1038/srep30338

Liu, B., Guo, X., Zhu, K., & Liu, Y. (2011). Nutritional evaluation and antioxidant activity of sesame sprouts. Food Chemistry, 129(3), 799-803. doi: https://doi.org/10.1016/j.foodchem.2011.05.024

Liu, H. K., Kang, Y. F., Zhao, X. Y., Liu, Y. P., Zhang, X. W., & Zhang, S. (2019). Effects of elicitation on bioactive compounds and biological activities of sprouts. Journal of Functional Foods, 53, 136-145. doi: https://doi.org/10.1016/j.jff.2018.12.019

Liu, H. K., Chen, Y. Y., Hu, T. T., Zhang, S., Zhang, Y. H. ... Kang, Y. F. (2016). The influence of light-emitting diodes on the phenolic compounds and antioxidant activities in pea sprouts. Journal of Functional Foods, 25, 459-465. doi: https://doi.org/10.1016/j.jff.2016.06.028

Loures, N. T. P., Nóbrega, L. H. P., & Coelho, S. R. M. (2009). Análise físico-química, microbiológica e sensorial de brotos de lentilha da variedade PRECOZ. Acta Scientiarum. Agronomy, 31(4), 599-606. doi: 10.4025/actasciagron.v31i4.317

Maia, Y.L., Correia, M. L. S., & Melo, F. L. D. (2020). Saúde e sustentabilidade em grãos: germinados, brotos e microgreens. Revista Referências em Saúde da Faculdade Estácio de Sá Goáis, 3(2), 147-157. ISSN online: 2596-3457. Retirado de: http://periodicos.estacio.br/index.php/rrsfesgo/article/viewFile/9200/47967430

Machado-Moreira, B., Richards, K., Brennan, F., Abram, F., & Burgess, C. M. (2019). Microbial Contamination of Fresh Produce: What, Where, and How? Comprehensive Reviews in Food Science and Food Safety, 18(6), 1727-1750. doi: https://doi.org/10.1111/1541-4337.12487

Machado, A. L. L., Barcelos, M. F. P., Teixeira, A. H. R., & Nogueira, D. A. (2009). Avaliação de componentes químicos em brotos de Fabaceae para o consumo humano. Ciência e Agrotecnologia, 33(4), 1071-1078. https://doi.org/10.1590/S1413-70542009000400018

Martins, D., Barros, L., Carvalho, A. M., & Ferreira, I. C. F. R. (2011). Nutritional and in vitro antioxidant properties of edible wild greens in Iberian Peninsula traditional diet. Food Chemistry, 125(2), 488-494. doi: https://doi.org/10.1016/j.foodchem.2010.09.038

Mendes, K. D. S., Campos, R. C. P. S., Galvão, C. M. (2008). Revisão integrativa: método de pesquisa para a incorporação de evidências na saúde e na enfermagem. Texto & Contexto Enfermagem, 17(4) 758-764. doi: https://doi.org/10.1590/S0104-07072008000400018

Merendino, N., Molinari, R., Costantini, L., Mazzucato, A., Pucci, A., Bonafaccia, F. ... Bonafaccia, G. (2014). A new "functional" pasta containing tartary buckwheat sprouts as an ingredient improves the oxidative status and normalizes some blood pressure parameters in spontaneously hypertensive rats. Food & Function, 5(5), 1017-1026. doi: 10.1039/c3fo60683j

Millan-Sango, D., Sammut, E., Van, J. F. I., & Valdramidis, V. P. (2017). Decontamination of alfalfa and mung bean sprouts by ultrasound and aqueous chlorine dioxide. LWT - Food Science and Technology , 78, 90-96. doi: https://doi.org/10.1016/j.lwt.2016.12.015

Miyahira, R. F., Lopes, J. O., & Antunes, A. E. C. (2021). The Use of Sprouts to Improve the Nutritional Value of Food Products: A Brief Review. Plant Foods for Human Nutrition, 76(2) 143-152. doi: 10.1007/s11130-021-00888-6

Mukhopadhyay, S., & Ukuku, D. O.(2018). The role of emerging technologies to ensure the microbial safety of fresh produce, milk and eggs. Current Opinion in Food Science, 19, 145-154. doi: https://doi.org/10.1016/j.cofs.2018.01.013

Nicola, G. R., Bagatta, M., Pagnotta, E., Angelino, D., Gennari, L., Ninfali, P. ... Iori, R. (2013). Comparison of bioactive phytochemical content and release of isothiocyanates in selected brassica sprouts. Food Chemistry, 141(1), 297-303. doi: 10.1016/j.foodchem.2013.02.102

Oh, M.-M., & Rajashekar, C. B. (2009). Antioxidant content of edible sprouts: effects of environmental shocks. Journal of the Science of Food and Agriculture, 89(13), 2221-2227. doi: https://doi.org/10.1002/jsfa.3711

Oh, S.- H., Soh, J.-R., & Cha, Y.-S. (2003). Germinated brown rice extract shows a nutraceutical effect in the recovery of chronic alcohol-related symptoms. J Med Food, 6(2), 115-121. doi: 10.1089/109662003322233512

Olivera, D. F., Viña, S. Z., Marani, C. M., Ferreyra, R. M., Mugridge, A., Chaves, A. R., & Mascheroni, R. H. (2008). Effect of blanching on the quality of Brussels sprouts (Brassica oleracea L. gemmifera DC) after frozen storage. Journal of Food Engineering, 84(1), 148-155. doi: https://doi.org/10.1016/j.jfoodeng.2007.05.005

Pająk, P., Socha, R., Galkowska, D., Rożnowski, J., & Fortuna, T. (2014). Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chemistry, 143, 300-306. doi: https://doi.org/10.1016/j.foodchem.2013.07.064

Park, S.-A., Grusak, M. A., & Oh, M.-M.. (2014). Concentrations of minerals and phenolic compounds in three edible sprout species treated with iron-chelates during imbibition. Horticulture, Environment, and Biotechnology, 55(6), 471-478. doi: 10.1007/s13580-014-0075-9

Pasko, P., Gdula-Argasinska, J., Podporska-Carroll, J., Quilty, B., Wietecha-Posluszny, R. … Zagrodzki, P. (2015). Influence of selenium supplementation on fatty acids profile and biological activity of four edible amaranth sprouts as new kind of functional food. Journal of Food Science and Technology, 52(8), 4724-4736. doi: 10.1007/s13197-014-1602-5

Peñas, E., & Martínez-Villaluenga, C. (2020). Advances in Production, Properties and Applications of Sprouted Seeds. Foods, 9(6), 790. doi:10.3390/foods9060790

Pérez-Balibrea, S., Moreno, D. A., & García-Viguera, C. (2011a). Genotypic effects on the phytochemical quality of seeds and sprouts from commercial broccoli cultivars. Food Chemistry, 125(2), 348-354. doi: https://doi.org/10.1016/j.foodchem.2010.09.004

Pérez-Balibrea, S., Moreno, D. A., & García-Viguera, C. (2011b). Improving the phytochemical composition of broccoli sprouts by elicitation. Food Chemistry, 129(1), 35-44. doi: https://doi.org/10.1016/j.foodchem.2011.03.049

Ragusa, L., Picchi, V., Tribulato, A., Cavallaro, C., Lo Scalzo, R., & Branca, F. (2017). The effect of the germination temperature on the phytochemical content of broccoli and rocket sprouts. International Journal of Food Sciences and Nutrition, 68(4), 411-420. doi: 10.1080/09637486.2016.1248907

Pimentel, M. M. (2016). A utilização das tecnologias não invasivas no cuidado em obstetrícia na atenção ao parto e nascimento: uma revisão integrativa. (Monografia). Universidade Federal Fluminense, Niterói, Brasil. Retirado 27 Maio de 2022 de: https://app.uff.br/riuff/bitstream/handle/1/3551/TCC%20Mariana%20Machado%20Pimentel.pdf;jsessionid=80D6BA31552F6A9AA71DDFC50C38B510?sequence=1

Rasera, G. B., & Castro, R. J. S. de. (2020). Germinação de grãos: uma revisão sistemática de como os processos bioquímicos envolvidos afetam o conteúdo e o perfil de compostos fenólicos e suas propriedades antioxidantes. Brazilian Journal of Natural Sciences, 3(1), 287. doi: 10.31415/bjns.v3i1.90

Rebollo-Hernanz, M., Aguilera, Y., Herrera, T., Cayuelas, L. T., Dueñas, M., Rodríguez-Rodríguez, P. ... Martín-Cabrejas, M. A. (2020). Bioavailability of Melatonin from Lentil Sprouts and Its Role in the Plasmatic Antioxidant Status in Rats. Foods, 9, 330. doi: 10.3390/foods9030330

Reilly, K., Valverde, J., Finn, L., Rai, D. K., Brunton, N., Sorensen, J. C. ... Gaffney, M. (2014). Potential of cultivar and crop management to affect phytochemical content in winter-grown sprouting broccoli (Brassica oleracea L. var. italica). Journal of Science of Food Agriculture, 94(2), 322-330. doi: 10.1002/jsfa.6263

Russel, J., Manchester, L. C., & Tan, D.-X. (2005). Melatonin in walnuts: Influence on levels of melatonin and total antioxidant capacity of blood. Nutrition, 21(9), 920-924. doi: https://doi.org/10.1016/j.nut.2005.02.005

Reitznerová, A., Šuleková, M., Nagy, J., Marcinčák, S., Semjon, B. … Klempová, T. (2017). Lipid Peroxidation Process in Meat and Meat Products: A Comparison Study of Malondialdehyde Determination between Modified 2-Thiobarbituric Acid Spectrophotometric Method and Reverse-Phase High-Performance Liquid Chromatography. Molecules, 22(11), 1988. doi: 10.3390/molecules22111988

Rico, D., Peñas, E., García, M. del C., Martínez-Villaluenga, C., Rai, D. K., Birsan, R. I. ... Martín-Diana, A. B. (2020). Sprouted Barley Flour as a Nutritious and Functional Ingredient. Foods, 9(3), 296. https://doi.org/10.3390/foods9030296

Santos, C. S., Silva, B., Valente, L. M. P., Gruber, S., & Vasconcelos, M. W. (2020). The Effect of Sprouting in Lentil (Lens culinaris) Nutritional and Microbiological Profile. Foods, 9(4), 400. doi: https://doi.org/10.3390/foods9040400

Mafetoni, R. R., & Shimo, A. K. K. (2014). Métodos não farmológicos para alívio da dor no trabalho de parto: revisão integrativa. Revista Mineira de Enfermagem,18(2), 505-512. doi: 10.5935/1415-2762.20140037

Sharma, M., Mridula, D., & Gupta, R. K. (2014). Development of sprouted wheat based probiotic beverage. Journal of Food Science and Technology, 51(12), 3926-3933. doi: 10.1007/s13197-013-0959-1

Silva, B. N., Cadavez, V., Teixeira, J. A., & Gonzales-Barron, U. (2017). Meta-analysis of the incidence of foodborne pathogens in vegetables and fruits from retail establishments in Europe. Current Opinion in Food Science, 18, 21-28. doi: https://doi.org/10.1016/j.cofs.2017.10.001

Šola, I., Vujčić, V. B., Pinterić, M., Auer, S., Ludwig-Müller, J., & Rusak, G. (2020). Improving the phytochemical profile and bioactivity of Chinese cabbage sprouts by interspecific transfer of metabolites. Food Research International, 137, 109726. doi: https://doi.org/10.1016/j.foodres.2020.109726

Souza, M. T., Silva, M. D., & Carvalho, R. (2010). Integrative review: what is it? How to do it? Eisnten, 8(1) 102-106. doi: https://doi.org/10.1590/s1679-45082010rw1134

Sozbilen, G. S., & Yemenicioğlu, A. (2020). Decontamination of seeds destined for edible sprout production from Listeria by using chitosan coating with synergetic lysozyme-nisin mixture. Carbohydrate Polymers, 235, 115968. doi: https://doi.org/10.1016/j.carbpol.2020.115968

Strassle, P. D., Gu, W., Bruce, B. B., & Gould, L. H. (2019). Sex and age distributions of persons in foodborne disease outbreaks and associations with food categories. Epidemiology and Infection, 147, e200. doi: 10.1017/S0950268818003126

Studer, P., Heller, W. E., Hummerjohann, J., & Drissner, D. (2013). Evaluation of aerated steam treatment of alfalfa and mung bean seeds to eliminate high levels of Escherichia coli O157:H7 and O178:H12, Salmonella enterica, and Listeria monocytogenes. Applied and environmental microbiology, 79(15), 4613-4619. doi: 10.1128/AEM.00443-13

Sun, W.-X., Zhang, R.-J., Fan, J., He, Y., & Mao, X.-H. (2018). Comprehensive transformative profiling of nutritional and functional constituents during germination of soybean sprouts. Journal of Food Measurement and Characterization, 12(2), 1295-1302. doi: 10.1007/s11694-018-9743-2

Surya, E., Fitriani, Ridhwan, M., Armi, Jailani, Rasool, A. … & Zulfajri, M. (2020). The utilization of peanut sprout extract as a green nitrogen source for the physicochemical and organoleptic properties of Nata de coco. Biocatalysis and Agricultural Biotechnology, 29, 101781. doi: https://doi.org/10.1016/j.bcab.2020.101781

Troszyńska, A., Estrella, I., Lamparski, G., Hernández, T., Amarowicz, R., & Pegg, R. B. (2011). Relationship between the sensory quality of lentil (Lens culinaris) sprouts and their phenolic constituents. Food Research International, 44(10), 3195-3201. doi: https://doi.org/10.1016/j.foodres.2011.08.007

Trząskowska, M., Dai, Y., Delaquis, P., & Wang, S. (2018). Pathogen reduction on mung bean reduction of Escherichia coli O157:H7, Salmonella enterica and Listeria monocytogenes on mung bean using combined thermal and chemical treatments with acetic acid and hydrogen peroxide. Food Microbiology, 76, 62-68. doi: https://doi.org/10.1016/j.fm.2018.04.008

Turner, E. R., Luo, Y., & Buchanan, R. L. (2020). Microgreen nutrition, food safety, and shelf life: A review. Journal of Food Science, 85(4), 870-882. doi: https://doi.org/10.1111/1750-3841.15049

Vaknin, Y., Hadas, R., Schafferman, D., Murkhovsky, L., & Bashan, N. (2008). The potential of milk thistle (Silybum marianum L.), an Israeli native, as a source of edible sprouts rich in antioxidants. Internaction Journal of Food Sciences and Nutrition, 59(4), 339-346. doi: 10.1080/09637480701554095

Vann, K., Techaparin, A., & Apiraksakorn, J. (2020). Beans germination as a potential tool for GABA-enriched tofu production. Journal of Food Science and Technology, 57(11), 3947-3954. doi: 10.1007/s13197-020-04423-4

Wang, J., Ma, H., & Wang, S. (2019). Application of Ultrasound, Microwaves, and Magnetic Fields Techniques in the Germination of Cereals. Food Science and Technology Research, 25(4), 489-497. doi: 10.3136/fstr.25.489

Wang, Z., Kwan, M. L., Pratt, R., Roh, J. M., Kushi, L. H., Danforth, K. N., … Tang, L. (2020). Effects of cooking methods on total isothiocyanate yield from cruciferous vegetables. Food Science & Nutrition, 8(10), 5673-5682. doi: https://doi.org/10.1002/fsn3.1836

Whittemore, R., &Knafl K.(2005). The integrative review: updated methodology. Journal of Advanced Nursing, 52 (2) 546-553. doi: https://doi.org/10.1111/j.1365-2648.2005.03621.x

Wojdyło, A., Nowicka, P., Tkacz, K., & Turkiewicz, I. P. (2020). Sprouts vs. Microgreens as Novel Functional Foods: Variation of Nutritional and Phytochemical Profiles and Their In vitro Bioactive Properties. Molecules, 25(20), 4648. doi: https://doi.org/10.3390/molecules25204648

Wu, F., Yang, N., Touré, A., Jin, Z., & Xu, X. (2013). Germinated Brown Rice and Its Role in Human Health. Critical Reviews in Food Science and Nutrition, 53(5), 451-463. doi: 10.1080/10408398.2010.542259

Wu, X., Zhou, Q.-H., & Xu, K. (2009). Are isothiocyanates potential anti-cancer drugs? Acta pharmacologica Sinica, 30(5), 501-512. doi: 10.1038/aps.2009.50

Xiang, Q., Liu, X., Liu, S., Ma, Y., Xu, C. & Bai, Y. (2019). Effect of plasma-activated water on microbial quality and physicochemical characteristics of mung bean sprouts. Innovative Food Science & Emerging Technologies, 52, 49-56. doi: https://doi.org/10.1016/j.ifset.2018.11.012

Xiao, Z., Lester, G. E., Luo, Y., & Wang, Q. (2012). Assessment of Vitamin and Carotenoid Concentrations of Emerging Food Products: Edible Microgreens. Journal of Agricultural and Food Chemistry, 60(31), 7644-7651. doi: 10.1021/jf300459b

Xu, M.-J., Dong, J.-F., & Zhu, M.-Y. (2005). Effects of germination conditions on ascorbic acid level and yield of soybean sprouts. Journal of the Science of Food and Agriculture, 85(6), 943-947. doi: https://doi.org/10.1002/jsfa.2050

Zagrodzki, P., Paśko, P., Galanty, A., Tyszka-Czochara, M., Wietecha-Posłuszny, R., Rubió, P. S. . . . & Gorinstein, S. (2020). Does selenium fortification of kale and kohlrabi sprouts change significantly their biochemical and cytotoxic properties? Journal of Trace Elements in Medicine and Biology, 59, 126466. doi: https://doi.org/10.1016/j.jtemb.2020.126466

Zhang, C., Cao, W., Hung, Y.-C., & Li, B. (2016). Application of electrolyzed oxidizing water in production of radish sprouts to reduce natural microbiota. Food Control, 67, 177-182. doi: https://doi.org/10.1016/j.foodcont.2016.02.045

Zhang, C., Zhang, Y., Zhao, Z., Liu, W., Chen, Y. … & Cao, Y. (2019). The application of slightly acidic electrolyzed water in pea sprout production to ensure food safety, biological and nutritional quality of the sprout. Food Control, 104, 83-90. doi: https://doi.org/10.1016/j.foodcont.2019.04.029

Zhu, Y., Wang, F., & Guo, L. (2019). Effect of jasmonic acid on glucosinolate metabolism in different organs of broccoli sprouts. Emirates Journal of Food and Agriculture, 31(2), 81-87. doi: https://doi.org/10.9755/ejfa.2019.v31.i2.1908

Zieliński, H., Frias, J., Piskuła, M. K., Kozłowska, H., & Vidal-Valverde, C. (2005). Vitamin B1 and B2, dietary fiber and minerals content of Cruciferae sprouts. European Food Research and Technology, 221(1), 78-83. doi: 10.1007/s00217-004-1119-7

Published

11/07/2022

How to Cite

SANTOS, G. A. F. dos .; FERREIRA, J. D. .; PAULA, J. M. de .; PAGLARINI, C. de S. .; GUEDES, S. F. .; LOSS, R. A. . Edible sprouts: Nutritional quality, microbiological safety and potential application in new products . Research, Society and Development, [S. l.], v. 11, n. 9, p. e33911931870, 2022. DOI: 10.33448/rsd-v11i9.31870. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31870. Acesso em: 15 nov. 2024.

Issue

Section

Review Article