Brotos comestíveis: Qualidade nutricional, segurança microbiológica e potencial aplicação em novos produtos
DOI:
https://doi.org/10.33448/rsd-v11i9.31870Palavras-chave:
Germinação; Compostos fenólicos; Microrganismos patogênicos; Desenvolvimento de novos produtos; Alimentos mais saudáveis.Resumo
Os brotos comestíveis são uma boa fonte de nutrientes e consumidos há cerca de 5000 anos pelos povos do oriente, podendo ser obtido em poucos dias após a germinação, a qual demanda pouco espaço e insumos. Desta forma o presente trabalho buscou verificar os principais compostos bioativos presentes em diferentes tipos de brotos comestíveis, a influência da germinação no teor desses compostos, os principais organismos associados à contaminação por esses alimentos e sua potencial aplicação para o desenvolvimento de novos produtos. Para isso foi desenvolvida uma revisão bibliográfica integrativa, com artigos publicados nas bases de dados Web of Science, Scopus, Google Scholar e Scielo. Sendo identificado que os principais compostos bioativos nesses alimentos são os compostos fenólicos, glucosinolatos, vitamina (C, B, E e D), minerais (Ca+2, Mg+2, K+, Na+, Fe+2, Zn+2, Cu+2 e Mn+2) e o ácido aminobutírico. Os estudos que aplicaram tratamentos como eleticição pelo uso de ultrassom, ácido jasmônico (JA), soluções de NaCl e glicose, foi observado um aumento do teor dos compostos bioativos presentes nos brotos. Já em relação aos principais microrganismos associados à contaminação por esses alimentos são patogênicos como Salmonella spp., Escherichia coli e Staphylococcus aureus, porém com aplicação de tratamentos físicos como branqueamento, ultrassom, resfriamento e irradiação, e a base de reagentes químicos como jasmonato de metila, ácido salicílico e tocoferol, se mostraram eficazes no controle desses microrganismos. Por fim, os brotos foram aplicados com o objetivo de enriquecer nutricionalmente os produtos como massas e bebidas.
Referências
Abellán, Á., Domínguez-Perles, R., Moreno, D A., & García-Viguera, C. (2019). Sorting out the Value of Cruciferous Sprouts as Sources of Bioactive Compounds for Nutrition and Health. Nutrients, 11(2), 429. doi: 10.3390/nu11020429
Aguilera, Y., Díaz, M. F., Jiménez, T., Benítez, V., Herrera, T. ... Martín-Cabrejas, M. A. (2013). Changes in nonnutritional factors and antioxidant activity during germination of nonconventional legumes. Journal of Agricultural and Food Chemistry, 61(34), 8120-8125. doi: 10.1021/jf4022652
Aguilera, Y., Rebollo-Hernanz, M., Herrera, T., Cayuelas, L. T., Rodríguez-Rodríguez, P. ... Martin-Cabrejas, M. A. (2016). Intake of bean sprouts influences melatonin and antioxidant capacity biomarker levels in rats. Food Functions, 7(3), 1438-1445. doi: 10.1039/c5fo01538c
Al-Qabba, M. M., El-Mowafy, M. A., Althwab, S. A., Alfheeaid, H. A., Aljutaily, T., & Barakat, H. (2020). Phenolic Profile, Antioxidant Activity, and Ameliorating Efficacy of Chenopodium quinoa Sprouts against CCl4-Induced Oxidative Stress in Rats. Nutrients, 12(10), 2904. doi:10.3390/nu12102904
Ampofo, J., Ngadi, M., & Ramaswamy, H. S. (2020). The Impact of Temperature Treatments on Elicitation of the Phenylpropanoid Pathway, Phenolic Accumulations and Antioxidative Capacities of Common Bean (Phaseolus vulgaris) Sprouts. Food and Bioprocess Technology, 13(9), 1544-1555. doi: 10.1007/s11947-020-02496-9
Ampofo, J. O., & Ngadi, M. (2020). Ultrasonic assisted phenolic elicitation and antioxidant potential of common bean (Phaseolus vulgaris) sprouts. Ultrasonics Sonochemistry, 64, 104974. doi: https://doi.org/10.1016/j.ultsonch.2020.104974
Aphalo, P., Martínez, E. N., & Añón, M. C. (2015). Amaranth Sprouts: A Potential Health Promoting and Nutritive Natural Food. International Journal of Food Properties, 18(12), 2688-2698. doi: 10.1080/10942912.2015.1004585
Baenas, N., Moreno, D. A., & García-Viguera, C. (2012). Selecting sprouts of brassicaceae for optimum phytochemical composition. Journal of Agricultural and Food Chemistry, 60(45), 11409-11420. doi: 10.1021/jf302863c
Baenas, N., García-Viguera, C., & Moreno, D. A. (2014). Biotic Elicitors Effectively Increase the Glucosinolates Content in Brassicaceae Sprouts. Journal of Agricultural and Food Chemistry, 62(8), 1881-1889. doi: 10.1021/jf404876z
Baenas, N., Gómez-Jodar, I., Moreno, D. A., García-Viguera, C., & Periago, P. M. (2017). Broccoli and radish sprouts are safe and rich in bioactive phytochemicals. Postharvest Biology and Technology, 127, 60-67. doi: https://doi.org/10.1016/j.postharvbio.2017.01.010
Baenas, N., Villaño, D., García-Viguera, C., & Moreno, D. A. (2016). Optimizing elicitation and seed priming to enrich broccoli and radish sprouts in glucosinolates. Food Chemistry, 204, 314-319. doi: https://doi.org/10.1016/j.foodchem.2016.02.144
Beaulieu, J. C., Reed, S. S., Obando-Ulloa, J. M., Boue, S. M., & Cole, M. R. (2020). Green Processing, Germinating and Wet Milling Brown Rice (Oryza sativa) for Beverages: Physicochemical Effects. Foods, 9(8), 1016. doi:10.3390/foods9081016
Bell, L., Lignou, S., & Wagstaff, C. (2020). High Glucosinolate Content in Rocket Leaves (Diplotaxis tenuifolia and Eruca sativa) after Multiple Harvests Is Associated with Increased Bitterness, Pungency, and Reduced Consumer Liking. Foods, 9(12), 1799. doi:10.3390/foods9121799
Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F., & Galieni, A. (2019). Sprouted Grains: A Comprehensive Review. Nutrients, 11(2), 421. doi:10.3390/nu11020421
Bentsink, L., & Koornneef, M. (2008). Seed dormancy and germination. The arabidopsis book, 6, e0119-e0119. doi: 10.1199/tab.0119
Bochnak-Niedźwiecka, J., Szymanowska, U., & Świeca, M. (2020). Studies on the development of vegetable-based powdered beverages – Effect of the composition and dispersing temperature on potential bioaccessibility of main low-molecular antioxidants and antioxidant properties. LWT, 131, 109822. doi: https://doi.org/10.1016/j.lwt.2020.109822
Butkutė, B., Taujenis, L., & Norkevičienė, E. (2018). Small-Seeded Legumes as a Novel Food Source. Variation of Nutritional, Mineral and Phytochemical Profiles in the Chain: Raw Seeds-Sprouted Seeds-Microgreens. Molecules (Basel, Switzerland), 24(1), 133. doi: 10.3390/molecules24010133
Cevallos-Casals, B. A., & Cisneros-Zevallos, L. (2010). Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chemistry, 119(4), 1485-1490. doi: https://doi.org/10.1016/j.foodchem.2009.09.030
CIDRAP. (2005). Center for Infectious Disease Research and Policy. Sprouts blamed in big Ontario Salmonella outbreak. Retirado 20 Mar, 2021, de: https://www.cidrap.umn.edu/news-perspective/2005/12/sprouts-blamed-big-ontario-salmonella-outbreak
Ciska, E., Drabińska, N., Honke, J., & Narwojsz, A. (2015). Boiled Brussels sprouts: A rich source of glucosinolates and the corresponding nitriles. Journal of Functional Foods, 19, 91-99. doi: https://doi.org/10.1016/j.jff.2015.09.008
Ciska, E., Honke, J., & Kozłowska, H. (2008). Effect of Light Conditions on the Contents of Glucosinolates in Germinating Seeds of White Mustard, Red Radish, White Radish, and Rapeseed. Journal of Agricultural and Food Chemistry, 56(19), 9087-9093. doi: 10.1021/jf801206g
Coello, K. E., Frias, J., Martínez-Villaluenga, C., Cartea, M. E., Abilleira, R., & Peñas, E. (2020). Potential of Germination in Selected Conditions to Improve the Nutritional and Bioactive Properties of Moringa (Moringa oleifera L.). Foods, 9(11), 1639. doi:10.3390/foods9111639
Comas-Basté, O., Latorre-Moratalla, M. L., Rabell-González, J., Veciana-Nogués, M. T., & Vidal-Carou, M. C.. (2020). Lyophilised legume sprouts as a functional ingredient for diamine oxidase enzyme supplementation in histamine intolerance. LWT, 125, 109201. doi: https://doi.org/10.1016/j.lwt.2020.109201
Costa, A. S. (2012). Síndrome de Münchausen por procuração: uma revisão integrativa (Trabalho de Conclusão de Curso). Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil. Retirado Nov 16, 2022 de: https://www.lume.ufrgs.br/bitstream/handle/10183/55277/000856921.pdf?sequence=1
Czarniecka-Skubina, E. (2002). Effect of the material form, storage and cooking methods on the quality of brussels sprouts. Polish Journal of Food and Nutrition Sciences, 52(3), 75-82. Retirado de: https://www.infona.pl/resource/bwmeta1.element.agro-3e569f84-0187-43fd-86dd-1a5e2829a398
Ding, H., Fu, T. J., & Smith, M. A. (2013). Microbial contamination in sprouts: How effective is seed disinfection treatment? Journal of Food Science, 0(0), 1-7. doi: 10.1111/1750-3841.12064
Dosz, E. B., Ku, K.-M., Juvik, J. A., & Jeffery, E. H. (2014). Total Myrosinase Activity Estimates in Brassica Vegetable Produce. Journal of Agricultural and Food Chemistry, 62(32), 8094-8100. doi: 10.1021/jf501692c
Drozdowska, M., Leszczyńska, T., Koronowicz, A., Piasna-Słupecka, E., Domagala, D., & Kusznierewicz, B. (2020). Young shoots of red cabbage are a better source of selected nutrients and glucosinolates in comparison to the vegetable at full maturity. European Food Research and Technology, 246(12), 2505-2515. doi: 10.1007/s00217-020-03593-x
Fenwick, G. R., Heaney, R. K., Mullin, W. J., & VanEtten, C. H. (1983). Glucosinolates and their breakdown products in food and food plants. C R C Critical Reviews in Food Science and Nutrition, 18(2), 123-201. doi: 10.1080/10408398209527361
Fischer, S., Wilckens, R., Jara, J., Aranda, M., Valdivia, W. ... Obal, I. (2017). Protein and antioxidant composition of quinoa (Chenopodium quinoa Willd.) sprout from seeds submitted to water stress, salinity and light conditions. Industrial Crops and Products, 107, 558-564. doi: https://doi.org/10.1016/j.indcrop.2017.04.035
Fusani, P., Piwowarski, J. P., Zidorn, C., Kiss, A. K., Scartezzini, F., & Granica, S. (2016). Seasonal variation in secondary metabolites of edible shoots of Buck’s beard [Aruncus dioicus (Walter) Fernald (Rosaceae)]. Food Chemistry, 202, 23-30. doi: https://doi.org/10.1016/j.foodchem.2016.01.103
Galanakis, C. M. (2020a). The Food Systems in the Era of the Coronavirus (COVID-19) Pandemic Crisis. Foods, 9(4), 523. doi:10.3390/foods9040523
Galanakis, C. M., Aldawoud, T. M. S., Rizou, M., Rowan, N, J., & Ibrahim, S. A. (2020b). Food Ingredients and Active Compounds against the Coronavirus Disease (COVID-19) Pandemic: A Comprehensive Review. Foods (Basel, Switzerland), 9(11), 1701. doi: 10.3390/foods9111701
Gan, R.-Y., Lui, W.-Y., Wu, K., Chan, C.-L., & Corke, H. (2017a). Hot Air Drying Induces Browning and Enhances Phenolic Content and Antioxidant Capacity in Mung Bean (Vigna radiata L.) Sprouts. Journal of Food Processing and Preservation, 41(1), e12846. doi: https://doi.org/10.1111/jfpp.12846
Gan, R.-Y., Lui, W.-Y., Wu, K., Chan, C.-L., Dai, S.-H. … Harold, C. (2017b). Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends in Food Science & Technology, 59, 1-14. doi: https://doi.org/10.1016/j.tifs.2016.11.010
Glibowski, P. (2009). Rheological properties and structure of inulin–whey protein gels. International Dairy Journal, 19(8), 443-449. doi: https://doi.org/10.1016/j.idairyj.2009.03.011
Guo, R., Hou, Q., Yuan, G., Zhao, Y., & Wang, Q. (2014). Effect of 2, 4-epibrassinolide on main health-promoting compounds in broccoli sprouts. LWT - Food Science and Technology, 58(1), 287-292. doi: https://doi.org/10.1016/j.lwt.2014.02.047
Hanschen, F. S., Platz, S., Mewis, I., Schreiner, M., Rohn, S., & Kroh, L. W. (2012). Thermally Induced Degradation of Sulfur-Containing Aliphatic Glucosinolates in Broccoli Sprouts (Brassica oleracea var. italica) and Model Systems. Journal of Agricultural and Food Chemistry, 60(9), 2231-2241. doi: 10.1021/jf204830p
Harris, L. J., Farber, J. N., Beuchat, L. R., Parish, M. E., Suslow, T. V. … & Busta, F. F. (2003). Outbreaks Associated with Fresh Produce: Incidence, Growth, and Survival of Pathogens in Fresh and Fresh-Cut Produce. Comprehensive Reviews in Food Science and Food Safety, 2(s1), 78-141. doi: https://doi.org/10.1111/j.1541-4337.2003.tb00031.x
Hassan, S., Ahmad, N., Ahmad, T., Imran, M., Xu, C., & Khan, M. K. (2019). Microwave processing impact on the phytochemicals of sorghum seeds as food ingredient. Journal of Food Processing and Preservation, 43(5), e13924. doi: https://doi.org/10.1111/jfpp.13924
Hassini, I., Baenas, N., Moreno, D. A., Carvajal, M., Boughanmi, N., & Martinez Ballesta, M. D. C. (2017). Effects of seed priming, salinity and methyl jasmonate treatment on bioactive composition of Brassica oleracea var. capitata (white and red varieties) sprouts. Journal of the Science Food and Agriculture, 97(8), 2291-2299. doi: 10.1002/jsfa.8037
Kim, S.-J., Zaidul, I. S. M., Maeda, T., Suzuki, T., Hashimoto, N., Takigawa, S. … & Yamauchi, H. (2007). A time-course study of flavonoids in the sprouts of tartary (Fagopyrum tataricum Gaertn.) buckwheats. Scientia Horticulturae, 115(1), 13-18. doi: https://doi.org/10.1016/j.scienta.2007.07.018
Kim, S.-J., Zaidul, I. S. M., Suzuki, T., Mukasa, Y., Hashimoto, N., Takigawa, S., Noda, T., Matsuura- Endo, C., & Yamauchi, H. (2008). Comparison of phenolic compositions between common and tartary buckwheat (Fagopyrum) sprouts. Food Chemistry, 110(4), 814-820. doi: 10.1016/j.foodchem.2008.02.050
Koodkaew, I. (2019). NaCl and glucose improve health-promoting properties in mung bean sprouts. Scientia Horticulturae, 247, 235-241. https://doi.org/10.1016/j.scienta.2018.12.022
Ku, K. M., Jeffery, E. H., & Juvik, J. A. (2014). Optimization of methyl jasmonate application to broccoli florets to enhance health-promoting phytochemical content. Journal of the Science Food and Agriculture, 94(10), 2090-2096. doi: 10.1002/jsfa.6529
Kuabara, C. T. M., Sales, P. R. S., Marin, M. J. S., & Tonhon, S. F. R. (2014). Integração ensino e serviços de saúde: uma revisão integrativa da literatura. Revista Mineira de Enfermagem, 18(1), 195-201. doi: 10.5935/1415-2762.20140015
Kumar, S., & Gautam, S. (2019). A combination process to ensure microbiological safety, extend storage life and reduce anti-nutritional factors in legume sprouts. Food Bioscience, 27, 18-29. doi: https://doi.org/10.1016/j.fbio.2018.11.005
Le, T. N., Chiu, C.-H., & Hsieh, P.-C. (2020). Bioactive Compounds and Bioactivities of Brassica oleracea L. var. italica Sprouts and Microgreens: An Updated Overview from a Nutraceutical Perspective. Plants, 9(8), 946. doi: 10.3390/plants9080946
Lee, Y.-K., Mijan, M. A., Ganesan, P., Yoo, S.-H., & Kwak, H.-S. (2013). The physicochemical properties of yoghurt supplemented with microencapsulated peanut sprout extract, a possible functional ingredient. International Journal of Dairy Technology, 66, 417-423. doi: 10.1111/1471-0307.12047
Li, Z., Yu, J., Peng, Y., & Huang, B. (2016). Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera). Scientific Reports, 6, 30338. doi: 10.1038/srep30338
Liu, B., Guo, X., Zhu, K., & Liu, Y. (2011). Nutritional evaluation and antioxidant activity of sesame sprouts. Food Chemistry, 129(3), 799-803. doi: https://doi.org/10.1016/j.foodchem.2011.05.024
Liu, H. K., Kang, Y. F., Zhao, X. Y., Liu, Y. P., Zhang, X. W., & Zhang, S. (2019). Effects of elicitation on bioactive compounds and biological activities of sprouts. Journal of Functional Foods, 53, 136-145. doi: https://doi.org/10.1016/j.jff.2018.12.019
Liu, H. K., Chen, Y. Y., Hu, T. T., Zhang, S., Zhang, Y. H. ... Kang, Y. F. (2016). The influence of light-emitting diodes on the phenolic compounds and antioxidant activities in pea sprouts. Journal of Functional Foods, 25, 459-465. doi: https://doi.org/10.1016/j.jff.2016.06.028
Loures, N. T. P., Nóbrega, L. H. P., & Coelho, S. R. M. (2009). Análise físico-química, microbiológica e sensorial de brotos de lentilha da variedade PRECOZ. Acta Scientiarum. Agronomy, 31(4), 599-606. doi: 10.4025/actasciagron.v31i4.317
Maia, Y.L., Correia, M. L. S., & Melo, F. L. D. (2020). Saúde e sustentabilidade em grãos: germinados, brotos e microgreens. Revista Referências em Saúde da Faculdade Estácio de Sá Goáis, 3(2), 147-157. ISSN online: 2596-3457. Retirado de: http://periodicos.estacio.br/index.php/rrsfesgo/article/viewFile/9200/47967430
Machado-Moreira, B., Richards, K., Brennan, F., Abram, F., & Burgess, C. M. (2019). Microbial Contamination of Fresh Produce: What, Where, and How? Comprehensive Reviews in Food Science and Food Safety, 18(6), 1727-1750. doi: https://doi.org/10.1111/1541-4337.12487
Machado, A. L. L., Barcelos, M. F. P., Teixeira, A. H. R., & Nogueira, D. A. (2009). Avaliação de componentes químicos em brotos de Fabaceae para o consumo humano. Ciência e Agrotecnologia, 33(4), 1071-1078. https://doi.org/10.1590/S1413-70542009000400018
Martins, D., Barros, L., Carvalho, A. M., & Ferreira, I. C. F. R. (2011). Nutritional and in vitro antioxidant properties of edible wild greens in Iberian Peninsula traditional diet. Food Chemistry, 125(2), 488-494. doi: https://doi.org/10.1016/j.foodchem.2010.09.038
Mendes, K. D. S., Campos, R. C. P. S., Galvão, C. M. (2008). Revisão integrativa: método de pesquisa para a incorporação de evidências na saúde e na enfermagem. Texto & Contexto Enfermagem, 17(4) 758-764. doi: https://doi.org/10.1590/S0104-07072008000400018
Merendino, N., Molinari, R., Costantini, L., Mazzucato, A., Pucci, A., Bonafaccia, F. ... Bonafaccia, G. (2014). A new "functional" pasta containing tartary buckwheat sprouts as an ingredient improves the oxidative status and normalizes some blood pressure parameters in spontaneously hypertensive rats. Food & Function, 5(5), 1017-1026. doi: 10.1039/c3fo60683j
Millan-Sango, D., Sammut, E., Van, J. F. I., & Valdramidis, V. P. (2017). Decontamination of alfalfa and mung bean sprouts by ultrasound and aqueous chlorine dioxide. LWT - Food Science and Technology , 78, 90-96. doi: https://doi.org/10.1016/j.lwt.2016.12.015
Miyahira, R. F., Lopes, J. O., & Antunes, A. E. C. (2021). The Use of Sprouts to Improve the Nutritional Value of Food Products: A Brief Review. Plant Foods for Human Nutrition, 76(2) 143-152. doi: 10.1007/s11130-021-00888-6
Mukhopadhyay, S., & Ukuku, D. O.(2018). The role of emerging technologies to ensure the microbial safety of fresh produce, milk and eggs. Current Opinion in Food Science, 19, 145-154. doi: https://doi.org/10.1016/j.cofs.2018.01.013
Nicola, G. R., Bagatta, M., Pagnotta, E., Angelino, D., Gennari, L., Ninfali, P. ... Iori, R. (2013). Comparison of bioactive phytochemical content and release of isothiocyanates in selected brassica sprouts. Food Chemistry, 141(1), 297-303. doi: 10.1016/j.foodchem.2013.02.102
Oh, M.-M., & Rajashekar, C. B. (2009). Antioxidant content of edible sprouts: effects of environmental shocks. Journal of the Science of Food and Agriculture, 89(13), 2221-2227. doi: https://doi.org/10.1002/jsfa.3711
Oh, S.- H., Soh, J.-R., & Cha, Y.-S. (2003). Germinated brown rice extract shows a nutraceutical effect in the recovery of chronic alcohol-related symptoms. J Med Food, 6(2), 115-121. doi: 10.1089/109662003322233512
Olivera, D. F., Viña, S. Z., Marani, C. M., Ferreyra, R. M., Mugridge, A., Chaves, A. R., & Mascheroni, R. H. (2008). Effect of blanching on the quality of Brussels sprouts (Brassica oleracea L. gemmifera DC) after frozen storage. Journal of Food Engineering, 84(1), 148-155. doi: https://doi.org/10.1016/j.jfoodeng.2007.05.005
Pająk, P., Socha, R., Galkowska, D., Rożnowski, J., & Fortuna, T. (2014). Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chemistry, 143, 300-306. doi: https://doi.org/10.1016/j.foodchem.2013.07.064
Park, S.-A., Grusak, M. A., & Oh, M.-M.. (2014). Concentrations of minerals and phenolic compounds in three edible sprout species treated with iron-chelates during imbibition. Horticulture, Environment, and Biotechnology, 55(6), 471-478. doi: 10.1007/s13580-014-0075-9
Pasko, P., Gdula-Argasinska, J., Podporska-Carroll, J., Quilty, B., Wietecha-Posluszny, R. … Zagrodzki, P. (2015). Influence of selenium supplementation on fatty acids profile and biological activity of four edible amaranth sprouts as new kind of functional food. Journal of Food Science and Technology, 52(8), 4724-4736. doi: 10.1007/s13197-014-1602-5
Peñas, E., & Martínez-Villaluenga, C. (2020). Advances in Production, Properties and Applications of Sprouted Seeds. Foods, 9(6), 790. doi:10.3390/foods9060790
Pérez-Balibrea, S., Moreno, D. A., & García-Viguera, C. (2011a). Genotypic effects on the phytochemical quality of seeds and sprouts from commercial broccoli cultivars. Food Chemistry, 125(2), 348-354. doi: https://doi.org/10.1016/j.foodchem.2010.09.004
Pérez-Balibrea, S., Moreno, D. A., & García-Viguera, C. (2011b). Improving the phytochemical composition of broccoli sprouts by elicitation. Food Chemistry, 129(1), 35-44. doi: https://doi.org/10.1016/j.foodchem.2011.03.049
Ragusa, L., Picchi, V., Tribulato, A., Cavallaro, C., Lo Scalzo, R., & Branca, F. (2017). The effect of the germination temperature on the phytochemical content of broccoli and rocket sprouts. International Journal of Food Sciences and Nutrition, 68(4), 411-420. doi: 10.1080/09637486.2016.1248907
Pimentel, M. M. (2016). A utilização das tecnologias não invasivas no cuidado em obstetrícia na atenção ao parto e nascimento: uma revisão integrativa. (Monografia). Universidade Federal Fluminense, Niterói, Brasil. Retirado 27 Maio de 2022 de: https://app.uff.br/riuff/bitstream/handle/1/3551/TCC%20Mariana%20Machado%20Pimentel.pdf;jsessionid=80D6BA31552F6A9AA71DDFC50C38B510?sequence=1
Rasera, G. B., & Castro, R. J. S. de. (2020). Germinação de grãos: uma revisão sistemática de como os processos bioquímicos envolvidos afetam o conteúdo e o perfil de compostos fenólicos e suas propriedades antioxidantes. Brazilian Journal of Natural Sciences, 3(1), 287. doi: 10.31415/bjns.v3i1.90
Rebollo-Hernanz, M., Aguilera, Y., Herrera, T., Cayuelas, L. T., Dueñas, M., Rodríguez-Rodríguez, P. ... Martín-Cabrejas, M. A. (2020). Bioavailability of Melatonin from Lentil Sprouts and Its Role in the Plasmatic Antioxidant Status in Rats. Foods, 9, 330. doi: 10.3390/foods9030330
Reilly, K., Valverde, J., Finn, L., Rai, D. K., Brunton, N., Sorensen, J. C. ... Gaffney, M. (2014). Potential of cultivar and crop management to affect phytochemical content in winter-grown sprouting broccoli (Brassica oleracea L. var. italica). Journal of Science of Food Agriculture, 94(2), 322-330. doi: 10.1002/jsfa.6263
Russel, J., Manchester, L. C., & Tan, D.-X. (2005). Melatonin in walnuts: Influence on levels of melatonin and total antioxidant capacity of blood. Nutrition, 21(9), 920-924. doi: https://doi.org/10.1016/j.nut.2005.02.005
Reitznerová, A., Šuleková, M., Nagy, J., Marcinčák, S., Semjon, B. … Klempová, T. (2017). Lipid Peroxidation Process in Meat and Meat Products: A Comparison Study of Malondialdehyde Determination between Modified 2-Thiobarbituric Acid Spectrophotometric Method and Reverse-Phase High-Performance Liquid Chromatography. Molecules, 22(11), 1988. doi: 10.3390/molecules22111988
Rico, D., Peñas, E., García, M. del C., Martínez-Villaluenga, C., Rai, D. K., Birsan, R. I. ... Martín-Diana, A. B. (2020). Sprouted Barley Flour as a Nutritious and Functional Ingredient. Foods, 9(3), 296. https://doi.org/10.3390/foods9030296
Santos, C. S., Silva, B., Valente, L. M. P., Gruber, S., & Vasconcelos, M. W. (2020). The Effect of Sprouting in Lentil (Lens culinaris) Nutritional and Microbiological Profile. Foods, 9(4), 400. doi: https://doi.org/10.3390/foods9040400
Mafetoni, R. R., & Shimo, A. K. K. (2014). Métodos não farmológicos para alívio da dor no trabalho de parto: revisão integrativa. Revista Mineira de Enfermagem,18(2), 505-512. doi: 10.5935/1415-2762.20140037
Sharma, M., Mridula, D., & Gupta, R. K. (2014). Development of sprouted wheat based probiotic beverage. Journal of Food Science and Technology, 51(12), 3926-3933. doi: 10.1007/s13197-013-0959-1
Silva, B. N., Cadavez, V., Teixeira, J. A., & Gonzales-Barron, U. (2017). Meta-analysis of the incidence of foodborne pathogens in vegetables and fruits from retail establishments in Europe. Current Opinion in Food Science, 18, 21-28. doi: https://doi.org/10.1016/j.cofs.2017.10.001
Šola, I., Vujčić, V. B., Pinterić, M., Auer, S., Ludwig-Müller, J., & Rusak, G. (2020). Improving the phytochemical profile and bioactivity of Chinese cabbage sprouts by interspecific transfer of metabolites. Food Research International, 137, 109726. doi: https://doi.org/10.1016/j.foodres.2020.109726
Souza, M. T., Silva, M. D., & Carvalho, R. (2010). Integrative review: what is it? How to do it? Eisnten, 8(1) 102-106. doi: https://doi.org/10.1590/s1679-45082010rw1134
Sozbilen, G. S., & Yemenicioğlu, A. (2020). Decontamination of seeds destined for edible sprout production from Listeria by using chitosan coating with synergetic lysozyme-nisin mixture. Carbohydrate Polymers, 235, 115968. doi: https://doi.org/10.1016/j.carbpol.2020.115968
Strassle, P. D., Gu, W., Bruce, B. B., & Gould, L. H. (2019). Sex and age distributions of persons in foodborne disease outbreaks and associations with food categories. Epidemiology and Infection, 147, e200. doi: 10.1017/S0950268818003126
Studer, P., Heller, W. E., Hummerjohann, J., & Drissner, D. (2013). Evaluation of aerated steam treatment of alfalfa and mung bean seeds to eliminate high levels of Escherichia coli O157:H7 and O178:H12, Salmonella enterica, and Listeria monocytogenes. Applied and environmental microbiology, 79(15), 4613-4619. doi: 10.1128/AEM.00443-13
Sun, W.-X., Zhang, R.-J., Fan, J., He, Y., & Mao, X.-H. (2018). Comprehensive transformative profiling of nutritional and functional constituents during germination of soybean sprouts. Journal of Food Measurement and Characterization, 12(2), 1295-1302. doi: 10.1007/s11694-018-9743-2
Surya, E., Fitriani, Ridhwan, M., Armi, Jailani, Rasool, A. … & Zulfajri, M. (2020). The utilization of peanut sprout extract as a green nitrogen source for the physicochemical and organoleptic properties of Nata de coco. Biocatalysis and Agricultural Biotechnology, 29, 101781. doi: https://doi.org/10.1016/j.bcab.2020.101781
Troszyńska, A., Estrella, I., Lamparski, G., Hernández, T., Amarowicz, R., & Pegg, R. B. (2011). Relationship between the sensory quality of lentil (Lens culinaris) sprouts and their phenolic constituents. Food Research International, 44(10), 3195-3201. doi: https://doi.org/10.1016/j.foodres.2011.08.007
Trząskowska, M., Dai, Y., Delaquis, P., & Wang, S. (2018). Pathogen reduction on mung bean reduction of Escherichia coli O157:H7, Salmonella enterica and Listeria monocytogenes on mung bean using combined thermal and chemical treatments with acetic acid and hydrogen peroxide. Food Microbiology, 76, 62-68. doi: https://doi.org/10.1016/j.fm.2018.04.008
Turner, E. R., Luo, Y., & Buchanan, R. L. (2020). Microgreen nutrition, food safety, and shelf life: A review. Journal of Food Science, 85(4), 870-882. doi: https://doi.org/10.1111/1750-3841.15049
Vaknin, Y., Hadas, R., Schafferman, D., Murkhovsky, L., & Bashan, N. (2008). The potential of milk thistle (Silybum marianum L.), an Israeli native, as a source of edible sprouts rich in antioxidants. Internaction Journal of Food Sciences and Nutrition, 59(4), 339-346. doi: 10.1080/09637480701554095
Vann, K., Techaparin, A., & Apiraksakorn, J. (2020). Beans germination as a potential tool for GABA-enriched tofu production. Journal of Food Science and Technology, 57(11), 3947-3954. doi: 10.1007/s13197-020-04423-4
Wang, J., Ma, H., & Wang, S. (2019). Application of Ultrasound, Microwaves, and Magnetic Fields Techniques in the Germination of Cereals. Food Science and Technology Research, 25(4), 489-497. doi: 10.3136/fstr.25.489
Wang, Z., Kwan, M. L., Pratt, R., Roh, J. M., Kushi, L. H., Danforth, K. N., … Tang, L. (2020). Effects of cooking methods on total isothiocyanate yield from cruciferous vegetables. Food Science & Nutrition, 8(10), 5673-5682. doi: https://doi.org/10.1002/fsn3.1836
Whittemore, R., &Knafl K.(2005). The integrative review: updated methodology. Journal of Advanced Nursing, 52 (2) 546-553. doi: https://doi.org/10.1111/j.1365-2648.2005.03621.x
Wojdyło, A., Nowicka, P., Tkacz, K., & Turkiewicz, I. P. (2020). Sprouts vs. Microgreens as Novel Functional Foods: Variation of Nutritional and Phytochemical Profiles and Their In vitro Bioactive Properties. Molecules, 25(20), 4648. doi: https://doi.org/10.3390/molecules25204648
Wu, F., Yang, N., Touré, A., Jin, Z., & Xu, X. (2013). Germinated Brown Rice and Its Role in Human Health. Critical Reviews in Food Science and Nutrition, 53(5), 451-463. doi: 10.1080/10408398.2010.542259
Wu, X., Zhou, Q.-H., & Xu, K. (2009). Are isothiocyanates potential anti-cancer drugs? Acta pharmacologica Sinica, 30(5), 501-512. doi: 10.1038/aps.2009.50
Xiang, Q., Liu, X., Liu, S., Ma, Y., Xu, C. & Bai, Y. (2019). Effect of plasma-activated water on microbial quality and physicochemical characteristics of mung bean sprouts. Innovative Food Science & Emerging Technologies, 52, 49-56. doi: https://doi.org/10.1016/j.ifset.2018.11.012
Xiao, Z., Lester, G. E., Luo, Y., & Wang, Q. (2012). Assessment of Vitamin and Carotenoid Concentrations of Emerging Food Products: Edible Microgreens. Journal of Agricultural and Food Chemistry, 60(31), 7644-7651. doi: 10.1021/jf300459b
Xu, M.-J., Dong, J.-F., & Zhu, M.-Y. (2005). Effects of germination conditions on ascorbic acid level and yield of soybean sprouts. Journal of the Science of Food and Agriculture, 85(6), 943-947. doi: https://doi.org/10.1002/jsfa.2050
Zagrodzki, P., Paśko, P., Galanty, A., Tyszka-Czochara, M., Wietecha-Posłuszny, R., Rubió, P. S. . . . & Gorinstein, S. (2020). Does selenium fortification of kale and kohlrabi sprouts change significantly their biochemical and cytotoxic properties? Journal of Trace Elements in Medicine and Biology, 59, 126466. doi: https://doi.org/10.1016/j.jtemb.2020.126466
Zhang, C., Cao, W., Hung, Y.-C., & Li, B. (2016). Application of electrolyzed oxidizing water in production of radish sprouts to reduce natural microbiota. Food Control, 67, 177-182. doi: https://doi.org/10.1016/j.foodcont.2016.02.045
Zhang, C., Zhang, Y., Zhao, Z., Liu, W., Chen, Y. … & Cao, Y. (2019). The application of slightly acidic electrolyzed water in pea sprout production to ensure food safety, biological and nutritional quality of the sprout. Food Control, 104, 83-90. doi: https://doi.org/10.1016/j.foodcont.2019.04.029
Zhu, Y., Wang, F., & Guo, L. (2019). Effect of jasmonic acid on glucosinolate metabolism in different organs of broccoli sprouts. Emirates Journal of Food and Agriculture, 31(2), 81-87. doi: https://doi.org/10.9755/ejfa.2019.v31.i2.1908
Zieliński, H., Frias, J., Piskuła, M. K., Kozłowska, H., & Vidal-Valverde, C. (2005). Vitamin B1 and B2, dietary fiber and minerals content of Cruciferae sprouts. European Food Research and Technology, 221(1), 78-83. doi: 10.1007/s00217-004-1119-7
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Gabrielly Assunção Félix dos Santos; Jakeline Dionizio Ferreira; Juliana Maria de Paula; Camila de Souza Paglarini; Suamya Ferreira Guedes; Raquel Aparecida Loss
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.