Biomass in an industrial boiler: characterizing and reducing waste from the burning process




Solid fuel; Ash; Biomass waste; Bark.


Ashes constitute a waste produced in the heat generation process from bioenergy. This study aimed to improve the biomass energy efficiency used in an industrial boiler. The physicochemical analysis was used to perform improvement in the quality of the biomass for solid fuel. Four biomass types (eucalyptus bark, wood chips, sawdust, and recycled wood waste) were analyzed. The material (ash) was collected every two months over one year. All samples were characterized regarding proximate analysis, chemical composition (macro and micronutrients), morphological characterization (via scanning electron microscopy [SEM] coupled with dispersive energy spectroscopy [EDS]), and particle size distribution. The four biomass types presented significant differences in moisture content and proximate analysis. The bark showed a high percentage of impurities with an ash content of 26.99%. It was possible to reduce the ash content of the biomass inserted into the boiler in half, by separating the bark in the granulometric strata and excluding the smallest particle size (<0.84 mm). The results regarding the ashes showed that chemical composition and physical attributes were similar in all samples over the year. The chemical components were the same, although they varied in quantity. It is possible to improve the biomass energetic performance by excluding the smallest particles prior to the boiler insertion.


ABNT NBR NM: 248:2003. (2003). Aggregates - Sieve analysis of fine and coarse aggregates

Akhtar, J., & Saidina Amin, N. (2012). A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable and Sustainable Energy Reviews, 16(7), 5101–5109.

ASTM-D4972-18. (2018). Standard test method for soil pH. ASTM Standard Guide, 1–6.

ASTM: D4442-07. (2019). Standard test methods for direct moisture content neasurement of wood and wood- base materials.

Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., & Bhaskar, T. (2017). Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresource Technology, 237, 57–63.

Brasil. (2009). RESOLUÇÃO No 420, de 28 de dezembro de 2009.

Cacuro, T. A., & Waldman, W. R. (2015). Fly-Ash from Biomass Burning: Applications and Potentialities. Revista Virtual de Química, 7(6), 2154–2165.

CCME, C. C. of M. of the E. (2021). Canadian environmental quality guidelines (CEQGs) provide science-based goals for the quality of aquatic and terrestrial ecosystems. Https://

Chen, M., Yu, D., & Wei, Y. (2015). Evaluation on ash fusion behavior of eucalyptus bark/lignite blends. Powder Technology, 286, 39–47.

Dashti, A., Noushabadi, A. S., Raji, M., Razmi, A., Ceylan, S., & Mohammadi, A. H. (2019). Estimation of biomass higher heating value (HHV) based on the proximate analysis: Smart modeling and correlation. Fuel, 257(March), 115931.

De Arruda, J. A., De Azevedo, T. A. O., Freire, J. L. D. O., Bandeira, L. B., Estrela, J. W. D. M., & Santos, S. J. D. A. (2016). Uso da cinza de biomassa na agricultura: efeitos sobre atributos do solo e resposta das culturas. Revista Principia - Divulgação Científica e Tecnológica Do IFPB, 1(30), 18.

EMBRAPA. (1979). Serviço Nacional de Levantamento e conservação de solos.

Fermanelli, C. S., Córdoba, A., Pierella, L. B., & Saux, C. (2020). Pyrolysis and copyrolysis of three lignocellulosic biomass residues from the agro-food industry: A comparative study. Waste Management, 102, 362–370.

Fernández, M. J., Mediavilla, I., Barro, R., Borjabad, E., Ramos, R., & Carrasco, J. E. (2019). Sintering reduction of herbaceous biomass when blended with woody biomass: predictive and combustion tests. Fuel, 239, 1115–1124.

Furtado, T. S., Ferreira, J. C., Brand, M. A., & Neves, M. D. (2012). Correlação entre teor de umidade e eficiência energética de resíduos de Pinus taeda em diferentes idades. Revista Árvore, 36, 577–582.

García, R., Pizarro, C., Lavín, A. G., & Bueno, J. L. (2014). Spanish biofuels heating value estimation. Part II: Proximate analysis data. Fuel, 117, 1139–1147.

Guo, G., Zhang, K., Liu, C., Xie, S., Li, X., Li, B., Shu, J., Niu, Y., Zhu, H., Ding, M., & Zhu, W. (2020). Comparative investigation on thermal decomposition of powdered and pelletized biomasses: Thermal conversion characteristics and apparent kinetics. Bioresource Technology, 301.

Hall, D. O. (1997). Biomass energy in industrialised countries—a view of the future. Forest Ecology and Management, 91(1), 17–45.

Hansted, A. L. S., Cacuro, T. A., Nakashima, G. T., Costa, V. E., Yamamoto, H., & Yamaji, F. M. (2018). Use of a lignocellulosic residue as solid fuel: The effect of ash content in the energy potential. Industrial Crops and Products, 116, 209–214.

Hansted, A. L. S., Nakashima, G. T., Martins, M. P., & Yamaji, F. M. (2016). Physico-Chemical Characterization of Leucaena leucocephala Biomass for Solid-Fuel Production. Revista Virtual de Química, 8(5), 1449–1460.

He, J., Strezov, V., Kumar, R., Weldekidan, H., Jahan, S., Dastjerdi, B. H., Zhou, X., & Kan, T. (2019). Pyrolysis of heavy metal contaminated Avicennia marina biomass from phytoremediation: Characterisation of biomass and pyrolysis products. Journal of Cleaner Production, 234, 1235–1245.

Hu, J., Jiang, B., Liu, J., Sun, Y., & Jiang, X. (2019). Influence of interactions between biomass components on physicochemical characteristics of char. Journal of Analytical and Applied Pyrolysis, 144.

IBA. (2019). Report 2019 (Indústria Brasileira de Árvores (Ed.).

Indiramma, P., Sudharani, C., & Needhidasan, S. (2020). Utilization of fly ash and lime to stabilize the expansive soil and to sustain pollution free environment – An experimental study. Materials Today: Proceedings, 22, 694–700.

International Paper. (2015). Caldeira de Biomassa Autossuficiência energética e sustentabilidade do negócio.

Kataki, S., Hazarika, S., & Baruah, D. C. (2017). Investigation on by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient using FTIR, XRD, SEM analysis and phyto-toxicity test. Journal of Environmental Management, 196, 201–216.

Lanzerstorfer, C. (2017). Chemical composition and properties of ashes from combustion plants using Miscanthus as fuel. Journal of Environmental Sciences, 54, 178–183.

Liang, G., Li, Y., Yang, C., Zi, C., Zhang, Y., Hu, X., & Zhao, W. (2020). Production of biosilica nanoparticles from biomass power plant fly ash. Waste Management, 105, 8–17.

Lima, E. A. de, Abdala, E. M., & Wenzel, A. A. (2008). Influência da umidade no poder calorífico superior da madeira. Comunicado Técnico - EMBRAPA, 1(220), 3.

Liu, X., Luo, Z., Yu, C., & Xie, G. (2019). Conversion mechanism of fuel-N during pyrolysis of biomass wastes. Fuel, 246, 42–50.

Madanayake, B. N., Gan, S., Eastwick, C., & Ng, H. K. (2017). Biomass as an energy source in coal co-firing and its feasibility enhancement via pre-treatment techniques. Fuel Processing Technology, 159, 287–305.

Maeda, S., Silva, H. D., & Magalhães, W. L. E. (2007). Aplicação de Cinza de Biomassa Florestal para Plantio de Pinus taeda em Latossolo e Cambissolo de Piraí do Sul, PR. Comunicado Técnico - Embrapa. a

Magdziarz, A., Dalai, A. K., & Koziński, J. A. (2016). Chemical composition, character and reactivity of renewable fuel ashes. Fuel, 176, 135–145.

Magdziarz, A., Gajek, M., Nowak-Woźny, D., & Wilk, M. (2018). Mineral phase transformation of biomass ashes – Experimental and thermochemical calculations. Renewable Energy, 128, 446–459.

Maj, I., Kalisz, S., & Szymajda, A. (2021). The influence of cow dung and mixed straw ashes on steel corrosion. Renewable Energy, 177, 1198–1211.

Maresca, A., Hansen, M., Ingerslev, M., & Astrup, T. F. (2018). Biomass and Bioenergy Column leaching from a Danish forest soil amended with wood ashes : fate of major and trace elements. Biomass and Bioenergy, 109(September 2017), 91–99.

Maxwell, D., Gudka, B. A., Jones, J. M., & Williams, A. (2020). Emissions from the combustion of torrefied and raw biomass fuels in a domestic heating stove. Fuel Processing Technology, 199.

Mayer, E., Eichermuller, J., Endriss, F., Baumgarten, B., Kirchof, R., Tejada, J., & Thorwarth, H. (2022). Utilization and recycling of wood ashes from industrial heat and power plants regarding fertilizer use. Waste Management, 141, 92–103.

Nogueira, L. A. H., & Lora, S. (2003). Dendroenergia. Fundamentos e Aplicações (Interciência (Ed.); 2nd ed.).

Nogués, F. S., García-Galindo, D., & Rezeau, A. (2010). Enegía de la biomasa.

Nunes, L. J. R., Matias, J. C. O., & Catalão, J. P. S. (2016). Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renewable and Sustainable Energy Reviews, 53, 235–242.

Osaki, F., & Darolt, M. R. (1991). Estudo da qualidade de cinzas vegetais para uso como adubos na região metropolitana de curitiba.

Paula, L. E. R. (2010). Produção e avaliação de briquetes de resíduos lignocelulósicos. Universidade Federal de Lavras.

Pereira, J. C. D., Sturion, J. A., Higa, A. R., Higa, R. C. V., & Shimizu, J. Y. (2000). Características da madeira de algumas espécies de eucalipto plantadas no Brasil. Embrapa Florestas, 38(1), 3–115.

Pio, D. T., Tarelho, L. A. C., Nunes, T. F. V., Baptista, M. F., & Matos, M. A. A. (2020). Co-combustion of residual forest biomass and sludge in a pilot-scale bubbling fluidized bed. Journal of Cleaner Production, 249.

Posom, J., Shrestha, A., Saechua, W., & Sirisomboon, P. (2016). Rapid non-destructive evaluation of moisture content and higher heating value of Leucaena leucocephala pellets using near infrared spectroscopy. Energy, 107, 464–472.

Price-Allison, A., Lea-Langton, A. R., Mitchell, E. J. S., Gudka, B., Jones, J. M., Mason, P. E., & Williams, A. (2019). Emissions performance of high moisture wood fuels burned in a residential stove. Fuel, 239(August 2018), 1038–1045.

Rajput, S. P., Jadhav, S. V., & Thorat, B. N. (2020). Methods to improve properties of fuel pellets obtained from different biomass sources: Effect of biomass blends and binders. Fuel Processing Technology, 199.

SBCS. (2013). O desafio de definir solos contaminados no brasil valores de referência . vol.1, n. 1 (jan./abr. 1976). Campinas: SBCS.

Shi, R., Li, J., Jiang, J., Mehmood, K., Liu, Y., Xu, R., & Qian, W. (2016). ScienceDirect Characteristics of biomass ashes from different materials and their ameliorative effects on acid soils. Journal of Environmental Sciences, 55, 294–302.

Shi, R., Li, J., Jiang, J., Mehmood, K., Liu, Y., Xu, R., & Qian, W. (2017). Characteristics of biomass ashes from different materials and their ameliorative effects on acid soils. Journal of Environmental Sciences, 55, 294–302.

Simioni, F. J., Buschinelli, C. C. de A., Deboni, T. L., & Passos, B. M. dos. (2018). Cadeia produtiva de energia de biomassa florestal: o caso da lenha de eucalipto no polo produtivo de Itapeva - SP. Ciência Florestal, 28(1), 310.

Souza, M. M., Silva, D. A., Rochadelli, R., & Santos, R. C. (2012). Estimativa de poder calorífico e caracterização para uso energético de resíduos da colheita e do processamento de Pinus taeda. Floresta, 42 (2), 325–334.

Tahami, A. S., Arabani, M., & Mirhosseini, A. F. (2018). Usage of two biomass ashes as filler in hot mix asphalt. Construction and Building Materials, 170(May), 547–556.

Tamanna, K., Raman, S. N., Jamil, M., & Hamid, R. (2020). Utilization of wood waste ash in construction technology: A review. Construction and Building Materials, 237, 117654.

Thy, P., Jenkins, B. M., Grundvig, S., Shiraki, R., & Lesher, C. E. (2009). Corrigendum to high temperature elemental losses and mineralogical changes in common biomass ashes [Fuel, vol. 85/5–6, pp. 793–795]. Fuel, 88(6), 1151.

Vale, A. T. do, Brasil, M. A. M., & Leão, A. L. (2002). Quantificação e caracterização energética da madeira e casca de espécies do cerrado. Ciência Florestal, 12(1), 71.

Wang, T., Li, Y., Zhang, J., Zhao, J., Liu, Y., Sun, L., Liu, B., Mao, H., Lin, Y., Li, W., Ju, M., & Zhu, F. (2018). Evaluation of the potential of pelletized biomass from different municipal solid wastes for use as solid fuel. Waste Management, 74, 260–266.

Wons, W., Rzepa, K., Reben, M., Murzyn, P., Sitarz, M., & Olejniczak, Z. (2018). Effect of thermal processing on the structural characteristics of fly ashes. Journal of Molecular Structure, 1165, 299–304.

Yao, X., Zhao, Z., Li, J., Zhang, B., Zhou, H., & Xu, K. (2020). Experimental investigation of physicochemical and slagging characteristics of inorganic constituents in ash residues from gasification of different herbaceous biomass. Energy, 198, 117367.

Zeng, T., Pollex, A., Weller, N., Lenz, V., & Nelles, M. (2018). Blended biomass pellets as fuel for small scale combustion appliances: Effect of blending on slag formation in the bottom ash and pre-evaluation options. Fuel, 212, 108–116.




How to Cite

HANSTED, A. L. S.; HANSTED, F. A. S. .; TOMELERI, J. O. P. .; CACURO, T. A. .; SETTE JR., C. R.; YAMAJI, F. M.; COSTA, V. E. Biomass in an industrial boiler: characterizing and reducing waste from the burning process . Research, Society and Development, [S. l.], v. 11, n. 9, p. e45511931948, 2022. DOI: 10.33448/rsd-v11i9.31948. Disponível em: Acesso em: 16 aug. 2022.



Agrarian and Biological Sciences