Biomasa en una caldera industrial: caracterización y reducción de residuos del proceso de quema
DOI:
https://doi.org/10.33448/rsd-v11i9.31948Palabras clave:
Combustible sólido; Ceniza; Residuos de biomassa; Corteza.Resumen
Las cenizas constituyen un residuo producido en el proceso de generación de calor a partir de bioenergía. Este estudio tuvo como objetivo mejorar la eficiencia energética de la biomasa utilizada en una caldera industrial. Se utilizó el análisis fisicoquímico para mejorar la calidad de la biomasa para combustible sólido. Se analizaron cuatro tipos de biomasa (corteza de eucalipto, astillas de madera, aserrín y residuos de madera reciclada). El material (cenizas) se recolectó cada dos meses durante un año. Todas las muestras se caracterizaron para su análisis inmediato, composición química (macro y micronutrientes), caracterización morfológica (mediante microscopía electrónica de barrido [SEM] acoplada con espectroscopia de energía dispersiva [EDS]) y distribución del tamaño de partículas. Los cuatro tipos de biomasa mostraron diferencias significativas en contenido de humedad y análisis inmediato. La corteza presentó un alto porcentaje de impurezas con un contenido de cenizas del 26,99%. Fue posible reducir a la mitad el contenido de cenizas de la biomasa insertada en la caldera, separando la corteza en los estratos granulométricos y excluyendo el tamaño de partícula más pequeño (<0,84 mm). Los resultados para la ceniza mostraron que la composición química y los atributos físicos fueron similares en todas las muestras durante todo el año. Los componentes químicos eran los mismos, aunque variaban en cantidad. Es posible mejorar el rendimiento energético de la biomasa excluyendo las partículas más pequeñas antes de la inserción de la caldera.
Citas
ABNT NBR NM: 248:2003. (2003). Aggregates - Sieve analysis of fine and coarse aggregates
Akhtar, J., & Saidina Amin, N. (2012). A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable and Sustainable Energy Reviews, 16(7), 5101–5109. https://doi.org/10.1016/j.rser.2012.05.033
ASTM-D4972-18. (2018). Standard test method for soil pH. ASTM Standard Guide, 1–6. https://doi.org/10.1520/D4972-18.2
ASTM: D4442-07. (2019). Standard test methods for direct moisture content neasurement of wood and wood- base materials. https://doi.org/10.1520/D4442-07.
Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., & Bhaskar, T. (2017). Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresource Technology, 237, 57–63. https://doi.org/10.1016/j.biortech.2017.02.046
Brasil. (2009). RESOLUÇÃO No 420, de 28 de dezembro de 2009.
Cacuro, T. A., & Waldman, W. R. (2015). Fly-Ash from Biomass Burning: Applications and Potentialities. Revista Virtual de Química, 7(6), 2154–2165. https://doi.org/10.5935/1984-6835.20150127
CCME, C. C. of M. of the E. (2021). Canadian environmental quality guidelines (CEQGs) provide science-based goals for the quality of aquatic and terrestrial ecosystems. Https://Ccme.ca/En/Current-Activities/Canadian-Environmental-Quality-Guidelines.
Chen, M., Yu, D., & Wei, Y. (2015). Evaluation on ash fusion behavior of eucalyptus bark/lignite blends. Powder Technology, 286, 39–47. https://doi.org/10.1016/j.powtec.2015.07.043
Dashti, A., Noushabadi, A. S., Raji, M., Razmi, A., Ceylan, S., & Mohammadi, A. H. (2019). Estimation of biomass higher heating value (HHV) based on the proximate analysis: Smart modeling and correlation. Fuel, 257(March), 115931. https://doi.org/10.1016/j.fuel.2019.115931
De Arruda, J. A., De Azevedo, T. A. O., Freire, J. L. D. O., Bandeira, L. B., Estrela, J. W. D. M., & Santos, S. J. D. A. (2016). Uso da cinza de biomassa na agricultura: efeitos sobre atributos do solo e resposta das culturas. Revista Principia - Divulgação Científica e Tecnológica Do IFPB, 1(30), 18. https://doi.org/10.18265/1517-03062015v1n30p18-30
EMBRAPA. (1979). Serviço Nacional de Levantamento e conservação de solos.
Fermanelli, C. S., Córdoba, A., Pierella, L. B., & Saux, C. (2020). Pyrolysis and copyrolysis of three lignocellulosic biomass residues from the agro-food industry: A comparative study. Waste Management, 102, 362–370. https://doi.org/10.1016/j.wasman.2019.10.057
Fernández, M. J., Mediavilla, I., Barro, R., Borjabad, E., Ramos, R., & Carrasco, J. E. (2019). Sintering reduction of herbaceous biomass when blended with woody biomass: predictive and combustion tests. Fuel, 239, 1115–1124. https://doi.org/10.1016/j.fuel.2018.11.115
Furtado, T. S., Ferreira, J. C., Brand, M. A., & Neves, M. D. (2012). Correlação entre teor de umidade e eficiência energética de resíduos de Pinus taeda em diferentes idades. Revista Árvore, 36, 577–582.
García, R., Pizarro, C., Lavín, A. G., & Bueno, J. L. (2014). Spanish biofuels heating value estimation. Part II: Proximate analysis data. Fuel, 117, 1139–1147. https://doi.org/10.1016/j.fuel.2013.08.049
Guo, G., Zhang, K., Liu, C., Xie, S., Li, X., Li, B., Shu, J., Niu, Y., Zhu, H., Ding, M., & Zhu, W. (2020). Comparative investigation on thermal decomposition of powdered and pelletized biomasses: Thermal conversion characteristics and apparent kinetics. Bioresource Technology, 301. https://doi.org/10.1016/j.biortech.2020.122732
Hall, D. O. (1997). Biomass energy in industrialised countries—a view of the future. Forest Ecology and Management, 91(1), 17–45. https://doi.org/10.1016/S0378-1127(96)03883-2
Hansted, A. L. S., Cacuro, T. A., Nakashima, G. T., Costa, V. E., Yamamoto, H., & Yamaji, F. M. (2018). Use of a lignocellulosic residue as solid fuel: The effect of ash content in the energy potential. Industrial Crops and Products, 116, 209–214. https://doi.org/10.1016/j.indcrop.2018.02.042
Hansted, A. L. S., Nakashima, G. T., Martins, M. P., & Yamaji, F. M. (2016). Physico-Chemical Characterization of Leucaena leucocephala Biomass for Solid-Fuel Production. Revista Virtual de Química, 8(5), 1449–1460. https://doi.org/10.21577/1984-6835.20160102
He, J., Strezov, V., Kumar, R., Weldekidan, H., Jahan, S., Dastjerdi, B. H., Zhou, X., & Kan, T. (2019). Pyrolysis of heavy metal contaminated Avicennia marina biomass from phytoremediation: Characterisation of biomass and pyrolysis products. Journal of Cleaner Production, 234, 1235–1245. https://doi.org/10.1016/j.jclepro.2019.06.285
Hu, J., Jiang, B., Liu, J., Sun, Y., & Jiang, X. (2019). Influence of interactions between biomass components on physicochemical characteristics of char. Journal of Analytical and Applied Pyrolysis, 144. https://doi.org/10.1016/j.jaap.2019.104704
IBA. (2019). Report 2019 (Indústria Brasileira de Árvores (Ed.).
Indiramma, P., Sudharani, C., & Needhidasan, S. (2020). Utilization of fly ash and lime to stabilize the expansive soil and to sustain pollution free environment – An experimental study. Materials Today: Proceedings, 22, 694–700. https://doi.org/10.1016/j.matpr.2019.09.147
International Paper. (2015). Caldeira de Biomassa Autossuficiência energética e sustentabilidade do negócio.
Kataki, S., Hazarika, S., & Baruah, D. C. (2017). Investigation on by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient using FTIR, XRD, SEM analysis and phyto-toxicity test. Journal of Environmental Management, 196, 201–216. https://doi.org/10.1016/j.jenvman.2017.02.058
Lanzerstorfer, C. (2017). Chemical composition and properties of ashes from combustion plants using Miscanthus as fuel. Journal of Environmental Sciences, 54, 178–183. https://doi.org/10.1016/j.jes.2016.03.032
Liang, G., Li, Y., Yang, C., Zi, C., Zhang, Y., Hu, X., & Zhao, W. (2020). Production of biosilica nanoparticles from biomass power plant fly ash. Waste Management, 105, 8–17. https://doi.org/10.1016/j.wasman.2020.01.033
Lima, E. A. de, Abdala, E. M., & Wenzel, A. A. (2008). Influência da umidade no poder calorífico superior da madeira. Comunicado Técnico - EMBRAPA, 1(220), 3. https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/315901/1/comtec220.pdf
Liu, X., Luo, Z., Yu, C., & Xie, G. (2019). Conversion mechanism of fuel-N during pyrolysis of biomass wastes. Fuel, 246, 42–50. https://doi.org/10.1016/j.fuel.2019.02.042
Madanayake, B. N., Gan, S., Eastwick, C., & Ng, H. K. (2017). Biomass as an energy source in coal co-firing and its feasibility enhancement via pre-treatment techniques. Fuel Processing Technology, 159, 287–305. https://doi.org/10.1016/j.fuproc.2017.01.029
Maeda, S., Silva, H. D., & Magalhães, W. L. E. (2007). Aplicação de Cinza de Biomassa Florestal para Plantio de Pinus taeda em Latossolo e Cambissolo de Piraí do Sul, PR. Comunicado Técnico - Embrapa. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/313922/aplicacao-de-cinza-de-biomassa-florestal-para-plantio-de-pinus-taeda-em-latossolo-e-cambissolo-do-pirai-do-sul-pr a
Magdziarz, A., Dalai, A. K., & Koziński, J. A. (2016). Chemical composition, character and reactivity of renewable fuel ashes. Fuel, 176, 135–145. https://doi.org/10.1016/j.fuel.2016.02.069
Magdziarz, A., Gajek, M., Nowak-Woźny, D., & Wilk, M. (2018). Mineral phase transformation of biomass ashes – Experimental and thermochemical calculations. Renewable Energy, 128, 446–459. https://doi.org/10.1016/j.renene.2017.05.057
Maj, I., Kalisz, S., & Szymajda, A. (2021). The influence of cow dung and mixed straw ashes on steel corrosion. Renewable Energy, 177, 1198–1211. https://doi.org/10.1016/j.renene.2021.06.019
Maresca, A., Hansen, M., Ingerslev, M., & Astrup, T. F. (2018). Biomass and Bioenergy Column leaching from a Danish forest soil amended with wood ashes : fate of major and trace elements. Biomass and Bioenergy, 109(September 2017), 91–99. https://doi.org/10.1016/j.biombioe.2017.12.014
Maxwell, D., Gudka, B. A., Jones, J. M., & Williams, A. (2020). Emissions from the combustion of torrefied and raw biomass fuels in a domestic heating stove. Fuel Processing Technology, 199. https://doi.org/10.1016/j.fuproc.2019.106266
Mayer, E., Eichermuller, J., Endriss, F., Baumgarten, B., Kirchof, R., Tejada, J., & Thorwarth, H. (2022). Utilization and recycling of wood ashes from industrial heat and power plants regarding fertilizer use. Waste Management, 141, 92–103.
Nogueira, L. A. H., & Lora, S. (2003). Dendroenergia. Fundamentos e Aplicações (Interciência (Ed.); 2nd ed.).
Nogués, F. S., García-Galindo, D., & Rezeau, A. (2010). Enegía de la biomasa.
Nunes, L. J. R., Matias, J. C. O., & Catalão, J. P. S. (2016). Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renewable and Sustainable Energy Reviews, 53, 235–242. https://doi.org/10.1016/j.rser.2015.08.053
Osaki, F., & Darolt, M. R. (1991). Estudo da qualidade de cinzas vegetais para uso como adubos na região metropolitana de curitiba.
Paula, L. E. R. (2010). Produção e avaliação de briquetes de resíduos lignocelulósicos. Universidade Federal de Lavras.
Pereira, J. C. D., Sturion, J. A., Higa, A. R., Higa, R. C. V., & Shimizu, J. Y. (2000). Características da madeira de algumas espécies de eucalipto plantadas no Brasil. Embrapa Florestas, 38(1), 3–115. https://periodicos.ufsm.br/cienciaflorestal/article/view/1702
Pio, D. T., Tarelho, L. A. C., Nunes, T. F. V., Baptista, M. F., & Matos, M. A. A. (2020). Co-combustion of residual forest biomass and sludge in a pilot-scale bubbling fluidized bed. Journal of Cleaner Production, 249. https://doi.org/10.1016/j.jclepro.2019.119309
Posom, J., Shrestha, A., Saechua, W., & Sirisomboon, P. (2016). Rapid non-destructive evaluation of moisture content and higher heating value of Leucaena leucocephala pellets using near infrared spectroscopy. Energy, 107, 464–472. https://doi.org/10.1016/j.energy.2016.04.041
Price-Allison, A., Lea-Langton, A. R., Mitchell, E. J. S., Gudka, B., Jones, J. M., Mason, P. E., & Williams, A. (2019). Emissions performance of high moisture wood fuels burned in a residential stove. Fuel, 239(August 2018), 1038–1045. https://doi.org/10.1016/j.fuel.2018.11.090
Rajput, S. P., Jadhav, S. V., & Thorat, B. N. (2020). Methods to improve properties of fuel pellets obtained from different biomass sources: Effect of biomass blends and binders. Fuel Processing Technology, 199. https://doi.org/10.1016/j.fuproc.2019.106255
SBCS. (2013). O desafio de definir solos contaminados no brasil valores de referência . vol.1, n. 1 (jan./abr. 1976). Campinas: SBCS.
Shi, R., Li, J., Jiang, J., Mehmood, K., Liu, Y., Xu, R., & Qian, W. (2016). ScienceDirect Characteristics of biomass ashes from different materials and their ameliorative effects on acid soils. Journal of Environmental Sciences, 55, 294–302. https://doi.org/10.1016/j.jes.2016.07.015
Shi, R., Li, J., Jiang, J., Mehmood, K., Liu, Y., Xu, R., & Qian, W. (2017). Characteristics of biomass ashes from different materials and their ameliorative effects on acid soils. Journal of Environmental Sciences, 55, 294–302. https://doi.org/10.1016/j.jes.2016.07.015
Simioni, F. J., Buschinelli, C. C. de A., Deboni, T. L., & Passos, B. M. dos. (2018). Cadeia produtiva de energia de biomassa florestal: o caso da lenha de eucalipto no polo produtivo de Itapeva - SP. Ciência Florestal, 28(1), 310. https://doi.org/10.5902/1980509831602
Souza, M. M., Silva, D. A., Rochadelli, R., & Santos, R. C. (2012). Estimativa de poder calorífico e caracterização para uso energético de resíduos da colheita e do processamento de Pinus taeda. Floresta, 42 (2), 325–334.
Tahami, A. S., Arabani, M., & Mirhosseini, A. F. (2018). Usage of two biomass ashes as filler in hot mix asphalt. Construction and Building Materials, 170(May), 547–556. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2018.03.102
Tamanna, K., Raman, S. N., Jamil, M., & Hamid, R. (2020). Utilization of wood waste ash in construction technology: A review. Construction and Building Materials, 237, 117654. https://doi.org/10.1016/j.conbuildmat.2019.117654
Thy, P., Jenkins, B. M., Grundvig, S., Shiraki, R., & Lesher, C. E. (2009). Corrigendum to high temperature elemental losses and mineralogical changes in common biomass ashes [Fuel, vol. 85/5–6, pp. 793–795]. Fuel, 88(6), 1151. https://doi.org/10.1016/j.fuel.2009.02.001
Vale, A. T. do, Brasil, M. A. M., & Leão, A. L. (2002). Quantificação e caracterização energética da madeira e casca de espécies do cerrado. Ciência Florestal, 12(1), 71. https://doi.org/10.5902/198050981702
Wang, T., Li, Y., Zhang, J., Zhao, J., Liu, Y., Sun, L., Liu, B., Mao, H., Lin, Y., Li, W., Ju, M., & Zhu, F. (2018). Evaluation of the potential of pelletized biomass from different municipal solid wastes for use as solid fuel. Waste Management, 74, 260–266. https://doi.org/10.1016/j.wasman.2017.11.043
Wons, W., Rzepa, K., Reben, M., Murzyn, P., Sitarz, M., & Olejniczak, Z. (2018). Effect of thermal processing on the structural characteristics of fly ashes. Journal of Molecular Structure, 1165, 299–304. https://doi.org/10.1016/j.molstruc.2018.04.008
Yao, X., Zhao, Z., Li, J., Zhang, B., Zhou, H., & Xu, K. (2020). Experimental investigation of physicochemical and slagging characteristics of inorganic constituents in ash residues from gasification of different herbaceous biomass. Energy, 198, 117367. https://doi.org/10.1016/j.energy.2020.117367
Zeng, T., Pollex, A., Weller, N., Lenz, V., & Nelles, M. (2018). Blended biomass pellets as fuel for small scale combustion appliances: Effect of blending on slag formation in the bottom ash and pre-evaluation options. Fuel, 212, 108–116. https://doi.org/10.1016/j.fuel.2017.10.036
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Ana Larissa Santiago Hansted; Felipe Augusto Santiago Hansted; João Otávio Poletto Tomeleri; Thiago Aguiar Cacuro; Carlos Roberto Sette Jr.; Fábio Minoru Yamaji; Vladimir Eliodoro Costa
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.