Bioremediation: sustainable methodology in the removal of xenobiotics from water

Authors

DOI:

https://doi.org/10.33448/rsd-v11i9.31978

Keywords:

Health; Environment; Water resources; Emerging contaminants; 2030 Agenda.

Abstract

Water is essential for the sustainability of life, and only 2.5% of the total volume is fresh and available in underground and surface reserves, being responsible for providing water for human supply, development of economic activities and maintenance of biodiversity. Population growth, urbanization and the expansion of agricultural and industrial economic activities require the increasing use of different chemical products, which reach water resources in different ways. These chemicals, called xenobiotics, are easily found in water, compromising its quality and safe supply. In addition, it has become a global concern as it poses serious risks to human health and the maintenance of biodiversity. The objective of the research is to verify if bioremediation is used for the treatment of wastewater and supply, aiming to provide subsidies to define the best treatment system to be used according to the characteristics of the water to be treated. This is a qualitative, descriptive, integrative literature review type. The selected articles point to bioremediation as a sustainable and economical alternative to remove xenobiotics from water, using different organisms (microalgae, fungi and cyanobacteria). In addition, phytoremediation has also proved to be an excellent option for certain xenobiotics.

References

Ai-Jawhari, I. F. H. (2018). Metais Pesados, Hidrocarbonetos Aromáticos Policíclicos (PAHs), Materiais Radioativos, Xenobióticos, Pesticidas, Produtos Químicos Perigosos e Biorremediação de Corantes. Phytobionte e Restituição Ecossistêmica. Springer, Cingapura, 215-229. DOI: https://doi.org/10.1007/978-981-13-1187-1_11.

Al-Baldawi, I. A., et al. (2021). Application of phytotechnology in alleviating pharmaceuticals and personal care products (PPCPs) in wastewater: source, impacts, treatment, mechanisms, fate, and SWOT analysis. Journal of Cleaner Production, 319, 128584. DOI: https://doi.org/10.1016/j.jclepro.2021.128584.

Almeida, F. V., et al. (2007). Substâncias Tóxicas Persistentes (STP) no Brasil. Rev. Quim. Nova, 30, 1976-1985. DOI: https://doi.org/10.1590/S0100-40422007000800033.

Américo-Pinheiro, J. H. P., et al. (2018). Presença de fármacos em estações de tratamento de esgoto, persistência em efluentes e técnicas de remoção. Recuperado de https://www.researchgate.net/publication/341804330_Capitulo_4_PRESENCA_DE_FARMACOS_EM_ESTACOES_DE_TRATAMENTO_DE_ESGOTO_PERSISTENCIA_EM_EFLUENTES_E_TECNICAS_DE_REMOCAO?enrichId=rgreq-87e7cf8266f3542c2b7cca32bfa4b501-XXX&enrichSource=Y292ZXJQYWdlOzM0MTgwNDMzMDtBUzo4OTc3MTQwNjk5NzA5NDRAMTU5MTA0MzEyMTUzNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf.

Ana Agência Nacional de Águas e Saneamento Básico. (2022). Conjuntura Recursos Hídricos Brasil 2021. Recuperado de https://relatorio-conjuntura-ana-2021.webflow.io/.

Auriol, M., et al. (2006). Endocrine disrupting compounds removal from wastewater, a new challenge. Process Biochemistry, 41, 525-539. https://doi.org/10.1016/j.procbio.2005.09.017.

Bárta, R. L., et al. (2021). Qualidade da água para consumo humano no Brasil: revisão integrativa da literatura. Revista Visa em debate, 9 (4), 74-85. DOI: https://doi.org/10.22239/2317-269x.01822.

Bilal, M., Barcelo, D., & Iqbal, H. M. N. (2021). Occurrence, environmental fate, ecological issues, and redefining of endocrine disruptive estrogens in water resources. Science of the Total Environment, 800, 149635. DOI: https://doi.org/10.1016/j.scitotenv.2021.149635.

Brunhoferova, H., et al. (2022). Bioremediation of 27 Micropollutants by Symbiotic Microorganisms of Wetland Macrophytes. Sustainability, 14, 3944. DOI: https://doi.org/10.3390/su14073944.

Castiglioni, S., et al. (2006) Removal of pharmaceuticals in sewage treatment plants in Italy. Environmental Science & Technology, 40 (1), 357-363. DOI: https://doi.org/10.1021/es050991m.

Chandel, N., et al. (2022). Progress in microalgal mediated bioremediation systems for the removal of antibiotics and pharmaceuticals from wastewater. Science of the Total Environment, 825, 153895. DOI: https://doi.org/10.1016/j.scitotenv.2022.153895.

Daronco, C. R., et al. (2020). Bioindicadores alternativos da qualidade da água para consumo humano. Research, Society and Development, 9 (9), e51996824. DOI: http://dx.doi.org/10.33448/rsd-v9i9.6824.

Ghiselli, G., & Jardim, W. F. (2007). Interferentes Endócrinos no Ambiente. Quim. Nova, 30, 695-706. DOI: https://doi.org/10.1590/S0100-40422007000300032.

Jeevanantham, S., et al. (2019). Removal of toxic pollutants from water environment by phytoremediation: a survey on application and future prospects. Environmental technology & innovation, 13, 264-276. DOI: https://doi.org/10.1016/j.eti.2018.12.007.

Kaur, J., & Maddela, N. R. (2021). Biorremediação microbiana: uma tecnologia de ponta para remoção xenobiótica. In: Maddela, N.R., García Cruzatty, L.C., Chakraborty, S. (eds) Advances in the Domain of Environmental Biotechnology. Biotecnologia Ambiental e Microbiana. Springer, Cingapura, 417-453. DOI: https://doi.org/10.1007/978-981-15-8999-7_16.

Montagner, C. C., Vidal, C., & Acayaba, R. D. (2017). Contaminantes emergentes em matrizes aquáticas do Brasil: cenário atual e aspectos analíticos, ecotoxicológicos e regulatórios. Quim. Nova, 40, 1094-1110. DOI: http://dx.doi.org/10.21577/0100-4042.20170091.

Montagner, C. C., et al. (2019). Ten Years-Snapshot of the Occurrence of Emerging Contaminants in Drinking, Surface and Ground Waters and Wastewaters from São Paulo State, Brazil. J. Braz. Chem. Soc., 30 (3), 614-632. DOI: http://dx.doi.org/10.21577/0103-5053.20180232.

Oliveira, L. R. (2018). Caracterização das nascentes da sub-bacia hidrográfica do rio Gaviãozinho, Bahia. Dissertação (Mestrado em Agricultura orgânica). Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica. 139. Recuperado de Caracterizacaodasnascentesdasubbacia.orient.EduardoCampello.pdf (embrapa.br).

Pereira, A. S., et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de https://repositorio.ufsm.br/bitstream /handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Rathore, S., et al. (2022). Uma abordagem inovadora da biorremediação na degradação enzimática dos xenobióticos. Biotecnologia e Engenharia Genética, 38, 1-32. DOI: https://doi.org/10.1080/02648725.2022.2027628.

Richardson, S. D., & Kimura, S. Y. (2016). Water analysis: emerging contaminants and current issues. Analytical chemistry, 88(1), 546-582. DOI: https://doi.org/10.1021/acs.analchem.5b04493.

Saravanan, A., et al. (2021). Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere, 280, 130595. DOI: https://doi.org/10.1016/j.chemosphere.2021.130595.

Souza, M. T, Silva, M. D. & Carvalho, R. (2010). Revisão integrativa: o que é e como fazer. Einstein, 8 (1), 102-106. DOI: https://doi.org/10.1590/s1679-45082010rw1134.

Shah, A., & Shah, M. (2020). Characterisation and bioremediation of wastewater: A review exploring bioremediation as a sustainable technique for pharmaceutical wastewater. Groundwater for Sustainable Development, 11, 100383. DOI: https://doi.org/10.1016/j.gsd.2020.100383.

Štefanac, T., Grgas, D., & Landeka Dragiˇcevi´c, T. (2021). Xenobiotics—Division and Methods of Detection: A Review. J. Xenobiot, 11 (4), 130-141. DOI: https://doi.org/10.3390/jox11040009.

Syed, Z., et al. (2021). Bioelectrochemical systems for environmental remediation of estrogens: A review and way forward. Science of the Total Environment, 780, 146544. DOI: https://doi.org/10.1016/j.scitotenv.2021.146544.

Xu, D., et al. (2020). Water treatment residual: A critical review of its applications on pollutant removal from stormwater runoff and future perspectives. Journal of Environmental Management, 259, 109649. DOI: https://doi.org/10.1016/j.jenvman.2019.109649.

Published

10/07/2022

How to Cite

COPETTI, C. M. .; JUNG, M. S. .; SILVA, J. A. G. da .; FACHINETTO, J. M. .; COSTA, R. S. .; OLIVEIRA, G. H. de .; FRAGA, D. da R. .; JUNG, J. S. . Bioremediation: sustainable methodology in the removal of xenobiotics from water. Research, Society and Development, [S. l.], v. 11, n. 9, p. e29811931978, 2022. DOI: 10.33448/rsd-v11i9.31978. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31978. Acesso em: 10 aug. 2022.

Issue

Section

Agrarian and Biological Sciences