Valorization of agro-industrial by-products for sustainable production of biosurfactant by Syncephalastrum racemosum UCP 1302

Authors

DOI:

https://doi.org/10.33448/rsd-v11i9.32372

Keywords:

Waste bioconversion; Microbial surfactant; Mucoralean fungus; Cassava wastewater; Waste soybean oil; Corn steep liquor.

Abstract

The reutilization of agro-industrial by-products for obtaining of high-value added biosurfactants is a promising approach for minimizing the total production costs. In this context, this study aimed to evaluate the production of biosurfactant by the Mucoralean fungus Syncephalastrum racemosum UCP 1302, by bioconversion of renewable substrates: cassava wastewater (CWW), waste soybean oil (WSO) and corn steep liquor (CSL). For this, a 23 full-factorial design (FFD) was applied and the results showed the ability of this strain to produce biosurfactant in all conditions of the FFD, standing out the condition 7 due to the greatest reduction of surface tension (from 72 to 30.9 mN/m). Preliminary characterization showed the lipopeptide nature of the biomolecule, as well as its anionic character and critical micellar concentration (CMC) of 1.25 mg/ml. Biotensoactive demonstrated stability to variations of temperature, pH and NaCl concentrations, wettability in polyester textile and it was effective on reduction of viscosity of burned motor oil. Hence, S. racemosum showed excellent ability to produce biosurfactant by green bioconversion of low-cost substrates, making the bioprocess economical and enabling its biotechnological applications.

Author Biographies

Ana Paula Bione, Catholic University of Pernambuco

Nucleus of Research in Environmental Sciences and Biotechnology

Amanda Barbosa Lins, Catholic University of Pernambuco

Nucleus of Research in Environmental Sciences and Biotechnology

Dayana Montero Rodríguez, Catholic University of Pernambuco

Nucleus of Research in Environmental Sciences and Biotechnology

Adriana Ferreira de Souza, Catholic University of Pernambuco

Nucleus of Research in Environmental Sciences and Biotechnology

Rafael de Souza Mendonça, Catholic University of Pernambuco

Nucleus of Research in Environmental Sciences and Biotechnology

Hilário J. B. de Lima Filho, Catholic University of Pernambuco

Nucleus of Research in Environmental Sciences and Biotechnology

 

References

Abreu, L. D. P. S., Berbert, P. A., de Souza Teodoro, C. E., & Martinazzo, A. P. (2022). Alternativa sustentável de uso da Bacillus amyloliquefaciens no biocontrole de fungos fitopatogênicos: uma revisão. Revista de Ciências Ambientais, 16(1).

Ahmad, W. A., Ahmad, W. Y. W., Zakaria, Z. A., & Yusof, N. Z. (2012). Application of bacterial pigments as colorant. In Application of bacterial pigments as colorant (pp. 57-74).

Banat, I. M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M. G., Fracchia, L., ... & Marchant, R. (2010). Microbial biosurfactants production, applications and future potential. Applied microbiology and biotechnology, 87(2), 427-444.

Bognolo, C. Biosurfactants as emulsifying agents for hydrocarbons. (1999). Colloids Surf. A Physicochem. Eng. Asp., 152 pp. 41-52.

de França, Í. W. L., Lima, A. P., Lemos, J. A. M., Lemos, C. G. F., Melo, V. M. M., de Sant’ana, H. B., & Gonçalves, L. R. B. (2015). Production of a biosurfactant by Bacillus subtilis ICA56 aiming bioremediation of impacted soils. Catalysis Today, 255, 10-15.

de França, Í. W. L., de Oliveira, D. W. F., Giro, M. E. A., Melo, V. M. M., & Gonçalves, L. R. B. (2021). Production of surfactin by Bacillus subtilis LAMI005 and evaluation of its potential as tensoactive and emulsifier. The Canadian Journal of Chemical Engineering.

de Souza, F. R. A., De Oliveira, J. S. T., Da Silva, D. P., De Oliveira, M. G., Neves, D. D., Da Silva, W. E., & Stamford, T. C. M. (2021). Biopolímeros na indústria de alimentos: do aproveitamento de resíduos agroindustriais a produção de biopolímeros. Verruck S,. Avanços em ciência e tecnologia de alimentos, 4, 370-88.

Faria, D., Machado, G. D., de Abreu Lang, R., Santos, F., & Lourega, R. (2021). Production and analysis of capsules containing microorganisms consortiated for future application in petroleum bioremediation. Biodegradation, 32(6), 613-625.

Gaur, V. K., Sharma, P., Gupta, S., Varjani, S., Srivastava, J. K., Wong, J. W., & Ngo, H. H. (2022). Opportunities and challenges in omics approaches for biosurfactant production and feasibility of site remediation: Strategies and advancements. Environmental Technology & Innovation, 25, 102132.

Giri, A.V., et al. (2004). A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiology, 1(11),1-10.

Guidi, Murilo Cezari; ROMERO, Oldrich Joel. (2018) Numerical Simulation of Surfactant Flooding in Petroleum Reservoirs. IEEE Latin America Transactions, v. 16, n. 6, p. 1700-1707

Ismail, N. L., Shahruddin, S., & Othman, J. (2022). Overview of Bio-Based Surfactant: Recent Development, Industrial Challenge, and Future Outlook.

Makkar, M. S.; Cameotra, S. S. (2002). An update on the use of unconventional substrates for biosurfactant production and their new applications. Applied Microbiology and Biotechnology, v. 58, p. 428-434.

Mandal, D., Majumdar, S., Dey, S., Dutta, S., & Mandal, T. (2021). Utilization of low-cost fatty acid sources by bacterial isolate for improved production of valuable prodigiosin. In Advances in Bioprocess Engineering and Technology (pp. 21-27). Springer, Singapore.

Manivasagan, P.; P. Sivasankar, J. Venkatesan, K. Sivakumar, S. K. Kim. (2014). Optimization, production and characterization of glycolipid biosurfactant from the marine actinobacterium, Streptomyces sp. MAB36, Bioprocess Biosyst. Eng. 37, 783-797.

Marchant R., & I. M. Banat, “Biosurfactants: a sustainable replacement for chemical surfactants?” Biotechnology Letters. (2012) vol. 34, no. 9, pp. 1597–1605.

Montero-Rodríguez, D., Andrade, R., Lima, R., Silva, G., Rubio-Ribeaux, D., Silva, T., ... & Takaki, G. C. (2016). Conversion of agro-industrial wastes by Serratia marcescens UCP/WFCC 1549 into lipids suitable for biodiesel production. Chemical Engineering Transactions, 49, 307-312.

Montero Rodríguez, D., de Souza Mendonça, R., de Souza, A. F., da Silva Ferreira, I. N., da Silva Andrade, R. F., & Campos-Takaki, G. M. (2022). Solid-state fermentation for low-cost production of biosurfactant by promising Mucor hiemalis UCP 1309. Research, Society and Development, 11(6), e25211628817-e25211628817.

Pradhan, A., & Bhattacharyya, A. (2017). Quest for an eco-friendly alternative surfactant: Surface and foam characteristics of natural surfactants. Journal of Cleaner Production, 150, 127-134.

Perfumo, A., Banat, I. M., & Marchant, R. (2018). Going green and cold: biosurfactants from low-temperature environments to biotechnology applications. Trends in biotechnology, 36(3), 277-289.

Prado, A. A. O. S., Santos, B. L. P., Vieira, I. M. M., Ramos, L. C., de Souza, R. R., Silva, D. P., & Ruzene, D. S. (2019). Evaluation of a new strategy in the elaboration of culture media to produce surfactin from hemicellulosic corncob liquor. Biotechnology Reports, 24, e00364.

Priya, K. A., Satheesh, S., Ashokkumar, B., Varalakshmi, P., Selvakumar, G., & Sivakumar, N. (2013). Antifouling activity of prodigiosin from estuarine isolate of Serratia marcescens CMST 07. In Microbiological research in agroecosystem management (pp. 11-21).

Punniyakotti, J.; Ponnusamy, V. (2017). Depth-wise distribution of 238 U, 232 Th and 40 K in sand samples of high background radiation areas (Tamilnadu coast), India. Journal of Radioanalytical and Nuclear Chemistry, v. 311, n. 3, p. 1875-1881.

Ren, Y., Fu, R., Fang, K., Xie, R., Hao, L., Chen, W., & Shi, Z. (2021). Clean dyeing of acrylic fabric by sustainable red bacterial pigment based on nano-suspension system. Journal of Cleaner Production, 281, 125295.

Sharma, D. (2021). Screening of Biosurfactants. In Biosurfactants: Greener Surface Active Agents for Sustainable Future (pp. 37-77).

Vatsa, P., Sanchez, L., Clement, C., Baillieul, F., & Dorey, S. (2010). Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. International journal of molecular sciences, 11(12), 5095-5108.

Venil, C. K., Dufossé, L., & Renuka Devi, P. (2020). Bacterial pigments: sustainable compounds with market potential for pharma and food industry. Frontiers in Sustainable Food Systems, 4, 100.

Venil, C. K., Zakaria, Z. A., & Ahmad, W. A. (2013). Bacterial pigments and their applications. Process Biochemistry, 48(7), 1065-1079.

Wang, S. L., Wang, C. Y., Yen, Y. H., Liang, T. W., Chen, S. Y., & Chen, C. H. (2012). Enhanced production of insecticidal prodigiosin from Serratia marcescens TKU011 in media containing squid pen. Process Biochemistry, 47(11), 1684-1690.

Downloads

Published

19/07/2022

How to Cite

BIONE, A. P.; LINS, A. B.; RODRÍGUEZ, D. M. .; SOUZA, A. F. de .; MENDONÇA, R. de S. .; LIMA FILHO, H. J. B. de .; CAMPOS-TAKAKI, G. M. Valorization of agro-industrial by-products for sustainable production of biosurfactant by Syncephalastrum racemosum UCP 1302. Research, Society and Development, [S. l.], v. 11, n. 9, p. e58011932372, 2022. DOI: 10.33448/rsd-v11i9.32372. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32372. Acesso em: 22 nov. 2024.

Issue

Section

Engineerings