Use of recombinant proteins in the diagnosis of sexually transmitted infections: a systematic review and meta-analysis

Authors

DOI:

https://doi.org/10.33448/rsd-v11i10.32970

Keywords:

STIs; Systematic review; Meta-analysis; Diagnosis.

Abstract

The present systematic review and meta-analysis aimed to investigate the use of recombinant proteins to diagnose STIs and evaluate the performance of the tests identified. The databases, SciELO, PubMed, CAPES Journal Portal, and LILACS, were searched according to the PRISMA protocol. A study was considered eligible if it met previously defined criteria. The risk of study bias was assessed according to the QUADAS-2 protocol. The meta-analysis was performed based on the random-effects model, and heterogeneity was quantified using the I² statistic. A total of 1,355 studies were selected, 30 of which were relevant to the following: human immunodeficiency virus (12/30), Treponema pallidum (10/30), Chlamydia trachomatis (3/30), herpes simplex virus (HSV, 2/30), Trichomonas vaginalis (2/30), and HSV/cytomegalovirus (1/30). The main serological tests were ELISA and immunochromatography. The risk of bias was low for most included studies. According to each microorganism, the meta-analysis revealed satisfactory sensitivity and specificity for the analyzed tests. The findings reinforce the relevance of diagnostic tests based on recombinant proteins as viable alternatives for production and inclusion in clinical practice. PROSPERO registration number: CRD42020206331.

References

Alderete, J. F. (2017). Epitopes within recombinant α-actinin protein is serodiagnostic target for Trichomonas vaginalis sexually transmitted infections. Heliyon, 3(1), e00237. https://doi.org/10.1016/j.heliyon.2017.e00237

Alderete, John F. (2020). Advancing Prevention of STIs by Developing Specific Serodiagnostic Targets: Trichomonas vginalis as a Model. International Journal of Environmental Research and Public Health, 17(16). https://doi.org/10.3390/ijerph17165783

AnandaRao, R., Swaminathan, S., Fernando, S., Jana, A. M., & Khanna, N. (2005). A custom-designed recombinant multiepitope protein as a dengue diagnostic reagent. Protein Expression and Purification, 41(1), 136–147. https://doi.org/10.1016/j.pep.2005.01.009

Arshad, Z., Alturkistani, A., Brindley, D., Lam, C., Foley, K., & Meinert, E. (2019). Tools for the Diagnosis of Herpes Simplex Virus 1/2: Systematic Review of Studies Published Between 2012 and 2018. JMIR Public Health and Surveillance, 5(2), e14216. https://doi.org/10.2196/14216

Ault, K. A. (2006). Epidemiology and natural history of human papillomavirus infections in the female genital tract. Infectious Diseases in Obstetrics and Gynecology, 2006(Figure 1), 1–5. https://doi.org/10.1155/IDOG/2006/40470

Balduzzi, S., Rücker, G., & Schwarzer, G. (2019). How to perform a meta-analysis with R: A practical tutorial. Evidence-Based Mental Health, 22(4), 153–160. https://doi.org/10.1136/ebmental-2019-300117

Barbosa, M. S., Alves, R. P. dos S., Rezende, I. de S., Pereira, S. S., Campos, G. B., Freitas, L. M., Chopra-Dewasthaly, R., Ferreira, L. C. de S., Guimarães, A. M. de S., Marques, L. M., & Timenetsky, J. (2020). Novel antigenic proteins of Mycoplasma agalactiae as potential vaccine and serodiagnostic candidates. Veterinary Microbiology, 251(May). https://doi.org/10.1016/j.vetmic.2020.108866

Bbosa, N., Kaleebu, P., & Ssemwanga, D. (2019). HIV subtype diversity worldwide. Current Opinion in HIV and AIDS, 14(3), 153–160. https://doi.org/10.1097/COH.0000000000000534

Borges, L. S. R. (2016). Medidas de Acurácia diagnóstica na pesquisa cardiovascular. International Journal of Cardiovascular Sciences, 29(3), 218–222. http://www.onlineijcs.org/english/sumario/29/pdf/v29n3a09.pdf

BRASIL, M. da S. (2020). Boletim Epidemiológico HIV / Aids | 2020. Secretaria de Vigilância Em Saúde, 1, 68.

Bump, J., & Salisbury, N. (2013). S14.3 Explaining Inaction: The Politics of Congenital Syphilis and the Global Health Agenda. Sexually Transmitted Infections, 89(Suppl 1), A21.2-A21. https://doi.org/10.1136/sextrans-2013-051184.0067

Cadosch, D., Garcia, V., Jensen, J. S., Low, N., & Althaus, C. L. (2020). Understanding the spread of de novo and transmitted macrolide-resistance in Mycoplasma genitalium. PeerJ, 2020(4), 1–16. https://doi.org/10.7717/peerj.8913

Cai, Q., Wang, H., Huang, L., Yan, H., Zhu, W., & Tang, S. (2019). Characterization of HIV-1 genotype specific antigens for the detection of recent and long-term HIV-1 infection in China. Virus Research, 264, 16–21. https://doi.org/10.1016/j.virusres.2019.02.010

Cina, M., Baumann, L., Egli-gany, D., Halbeisen, F. S., Ali, H., Scott, P., & Low, N. (2019). Mycoplasma genitalium incidence, persistence, concordance between partners and progression: systematic review and meta-analysis. Sex Transm Infect., 95, 328–335. https://doi.org/10.1136/sextrans-2018-053823

Curtis, K. A., Kennedy, M. S., Charurat, M., Nasidi, A., Delaney, K., Spira, T. J., & Owen, S. M. (2012). Development and characterization of a bead-based, multiplex assay for estimation of recent HIV type 1 infection. AIDS Research and Human Retroviruses, 28(2), 188–197. https://doi.org/10.1089/aid.2011.0037

Daskalakis, D. (2011). HIV diagnostic testing: Evolving technology and testing strategies. Topics in Antiviral Medicine, 19(1), 18–22.

de Haro-Cruz, M. J., Guadarrama-Macedo, S. I., López-Hurtado, M., Escobedo-Guerra, M. R., & Guerra-Infante, F. M. (2019). Obtaining an ELISA test based on a recombinant protein of Chlamydia trachomatis. International Microbiology : The Official Journal of the Spanish Society for Microbiology, 22(4), 471–478. https://doi.org/10.1007/s10123-019-00074-4

Drancourt, M., Michel-lepage, A., & Boyer, S. (2016). The Point-of-Care Laboratory in Clinical Microbiology. 29(3), 429–447. https://doi.org/10.1128/CMR.00090-15.Address

Duarte, L. S., Barsé, L. Q., Dalberto, P. F., da Silva, W. T. S., Rodrigues, R. C., Machado, P., Basso, L. A., Bizarro, C. V., & Ayub, M. A. Z. (2020). Cloning and expression of the Bacillus amyloliquefaciens transglutaminase gene in E. coli using a bicistronic vector construction. Enzyme and Microbial Technology, 134, 109468. https://doi.org/10.1016/j.enzmictec.2019.109468

Gallerano, D., Ndlovu, P., Makupe, I., Focke-Tejkl, M., Fauland, K., Wollmann, E., Puchhammer-Stöckl, E., Keller, W., Sibanda, E., & Valenta, R. (2015). Comparison of the specificities of IgG, IgG-subclass, IgA and IgM reactivities in African and European HIV-infected individuals with an HIV-1 clade C proteome-based array. PLoS ONE, 10(2), 1–19. https://doi.org/10.1371/journal.pone.0117204

Ghosn, J., Taiwo, B., Seedat, S., Autran, B., & Katlama, C. (2018). Hiv. Lancet (London, England), 392(10148), 685–697. https://doi.org/10.1016/S0140-6736(18)31311-4

Granade, T. C., Nguyen, S., Kuehl, D. S., & Parekh, B. S. (2013a). Development of a novel rapid HIV test for simultaneous detection of recent or long-term HIV type 1 infection using a single testing device. AIDS Research and Human Retroviruses, 29(1), 61–67. https://doi.org/10.1089/aid.2012.0121

Granade, T. C., Nguyen, S., Kuehl, D. S., & Parekh, B. S. (2013b). Development of a novel rapid HIV test for simultaneous detection of recent or long-term HIV type 1 infection using a single testing device. AIDS Research and Human Retroviruses, 29(1), 61–67. https://doi.org/10.1089/aid.2012.0121

Herbison, P., Hay-Smith, J., & Gillespie, W. J. (2011). Meta-analyses of small numbers of trials often agree with longer-term results. Journal of Clinical Epidemiology, 64(2), 145–153. https://doi.org/10.1016/j.jclinepi.2010.02.017

Herbst De Cortina, S., Bristow, C. C., Joseph Davey, D., & Klausner, J. D. (2016). A Systematic Review of Point of Care Testing for Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis. Infectious Diseases in Obstetrics and Gynecology, 2016. https://doi.org/10.1155/2016/4386127

Hokynar, K., Korhonen, S., Norja, P., Paavonen, J., & Puolakkainen, M. (2017). Antibody to Chlamydia trachomatis proteins, TroA and HtrA, as a biomarker for Chlamydia trachomatis infection. European Journal of Clinical Microbiology & Infectious Diseases : Official Publication of the European Society of Clinical Microbiology, 36(1), 49–56. https://doi.org/10.1007/s10096-016-2769-7

Horner, P. J., & Martin, D. H. (2017). Mycoplasma genitalium Infection in Men. J Infect Dis, 216(Suppl 2), 396–405. https://doi.org/10.1093/infdis/jix145

Irwig, L., Tosteson, A. N. A., Gatsonis, C., Lau, J., Colditz, G., Chalmers, T. C., & Mosteller, F. (1994). Guidelines for meta-analyses evaluating diagnostic tests. Annals of Internal Medicine, 120(8), 667–676. https://doi.org/10.7326/0003-4819-120-8-199404150-00008

Jia, B., & Jeon, C. O. (2016). High-throughput recombinant protein expression in Escherichia coli: Current status and future perspectives. Open Biology, 6(8). https://doi.org/10.1098/rsob.160196

Jiang, C., Xiao, J., Xie, Y., Xiao, Y., Wang, C., Kuang, X., Xu, M., Li, R., Zeng, T., Liu, S., Yu, J., Zhao, F., & Wu, Y. (2016). Evaluation of FlaB1, FlaB2, FlaB3, and Tp0463 of Treponema pallidum for serodiagnosis of syphilis. Diagnostic Microbiology and Infectious Disease, 84(2), 105–111. https://doi.org/10.1016/j.diagmicrobio.2015.10.005

Jiang, C., Zhao, F., Xiao, J., Zeng, T., Yu, J., Ma, X., Wu, H., & Wu, Y. (2013). Evaluation of the recombinant protein TpF1 of Treponema pallidum for serodiagnosis of syphilis. Clinical and Vaccine Immunology, 20(10), 1563–1568. https://doi.org/10.1128/CVI.00122-13

Jonathan J Deeks, Julian PT Higgins, D. G. A. on behalf of the C. S. M. G. (2020). Chapter 10: Analysing data and undertaking meta-analyses. In Cochrane Handbook for Systematic Reviews of Interventions version 6.1. https://training.cochrane.org/handbook/current

Juneyoung Lee, Kyung Won Kim, Sang Hyun Choi, J. H., & Seong Ho Park. (2015). Systematic Review and Meta-Analysis of Studies Evaluating Diagnostic Test Accuracy: A Practical Review for Clinical Researchers–Part II. Statistical Methods of Meta-Analysis. Korean Journal of Radiology, 16(6), 1188–1196. https://doi.org/10.3348/kjr.2015.16.6.1175

K. Shamsur Rahman, a Toni Darville, b Harold C. Wiesenfeld, c Sharon L. Hillier, c B. K. (2018). Mixed Chlamydia trachomatis Peptide Antigens Provide a Specific and Sensitive Single-Well Colorimetric Enzyme-Linked Immunosorbent Assay for Detection of Human Anti-C. trachomatis Antibodies. Clinical Science and Epidemiology, 3(6), 1–20.

Korshun, L., Vudmaska, M., Moysa, L., Kovtonjuk, G., Mikhalap, S., Ganova, L., & Spivak, N. (2013). Recombinant glycoprotein G analog for determination of specific immunoglobulins to herpes simplex virus type 2 by ELISA. Journal of Virological Methods, 194(1–2), 67–73. https://doi.org/10.1016/j.jviromet.2013.07.060

Lin, L. R., Fu, Z. G., Dan, B., Jing, G. J., Tong, M. L., Chen, D. T., Yu, Y., Zhang, C. G., Yang, T. C., & Zhang, Z. Y. (2010). Development of a colloidal gold-immunochromatography assay to detect immunoglobulin G antibodies to Treponema pallidum with TPN17 and TPN47. Diagnostic Microbiology and Infectious Disease, 68(3), 193–200. https://doi.org/10.1016/j.diagmicrobio.2010.06.019

Lin, L. R., Tong, M. L., Fu, Z. G., Dan, B., Zheng, W. H., Zhang, C. G., Yang, T. C., & Zhang, Z. Y. (2011). Evaluation of a colloidal gold immunochromatography assay in the detection of Treponema pallidum specific IgM antibody in syphilis serofast reaction patients: A serologic marker for the relapse and infection of syphilis. Diagnostic Microbiology and Infectious Disease, 70(1), 10–16. https://doi.org/10.1016/j.diagmicrobio.2010.11.015

Lisboa Bastos, M., Tavaziva, G., Abidi, S. K., Campbell, J. R., Haraoui, L. P., Johnston, J. C., Lan, Z., Law, S., MacLean, E., Trajman, A., Menzies, D., Benedetti, A., & Khan, F. A. (2020). Diagnostic accuracy of serological tests for covid-19: Systematic review and meta-analysis. The BMJ, 370. https://doi.org/10.1136/bmj.m2516

Liu, J., Chen, X., Wang, J., Wu, F., Zhang, J., Dong, J., Zhang, H., Liu, X., Hu, N., Wu, J., Zhang, L., Cheng, W., & Zhang, C. (2021). Prediction and identi fi cation of CD4+ T cell epitope for the protective antigens of Mycobacterium tuberculosis. Medicine, 6(August 2020).

Liu, Y., Yu, F., Huang, H., & Han, J. (2013). Development of Recombinant Antigen Array for Simultaneous Detection of Viral Antibodies. PLoS ONE, 8(9), 1–9. https://doi.org/10.1371/journal.pone.0073842

Long, F.-Q., Zhang, J.-P., Shang, G.-D., Shang, S.-X., Gong, K.-L., & Wang, Q.-Q. (2012). Seroreactivity and immunogenicity of Tp0965, a hypothetical membrane protein of Treponema pallidum. Chinese Medical Journal, 125(11), 1920–1924.

Ma, Y., Ni, C., Dzakah, E. E., Wang, H., Kang, K., Tang, S., Wang, J., & Wang, J. (2016). Development of Monoclonal Antibodies against HIV-1 p24 Protein and Its Application in Colloidal Gold Immunochromatographic Assay for HIV-1 Detection. BioMed Research International, 2016, 1–6. https://doi.org/10.1155/2016/6743904

Moshgabadi, N., Galli, R. A., Daly, A. C., Ko, S. M. S., Westgard, T. E., Bulpitt, A. F., & Shackleton, C. R. (2015a). Sensitivity of a rapid point of care assay for early HIV antibody detection is enhanced by its ability to detect HIV gp41 IgM antibodies. Journal of Clinical Virology, 71, 67–72. https://doi.org/10.1016/j.jcv.2015.08.005

Moshgabadi, N., Galli, R. A., Daly, A. C., Ko, S. M. S., Westgard, T. E., Bulpitt, A. F., & Shackleton, C. R. (2015b). Sensitivity of a rapid point of care assay for early HIV antibody detection is enhanced by its ability to detect HIV gp41 IgM antibodies. Journal of Clinical Virology : The Official Publication of the Pan American Society for Clinical Virology, 71, 67–72. https://doi.org/10.1016/j.jcv.2015.08.005

Nodjikouambaye, Z. A., Compain, F., Sadjoli, D., Bouassa, R. M., Péré, H., Veyer, D., Robin, L., Adawaye, C., Tonen-wolyec, S., Moussa, A. M., Koyalta, D., & Belec, L. (2019). Accuracy of Curable Sexually Transmitted Infections and Genital Mycoplasmas Screening by Multiplex Real-Time PCR Using a Self-Collected Veil among Adult Women in Sub-Saharan Africa. Infectious Diseases in Obstetrics and Gynecology, 2019, 2–15. https://doi.org/10.1155/2019/8639510

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372. https://doi.org/10.1136/bmj.n71

Parpia, Z. A., Elghanian, R., Nabatiyan, A., Hardie, D. R., & Kelso, D. M. (2010). p24 antigen rapid test for diagnosis of acute pediatric HIV infection. Journal of Acquired Immune Deficiency Syndromes (1999), 55(4), 413–419. https://doi.org/10.1097/QAI.0b013e3181f1afbc

Peeling, R. W., Holmes, K. K., Mabey, D., & Ronald, A. (2006). Rapid tests for sexually transmitted infections (STIs): The way forward. Sexually Transmitted Infections, 82(SUPPL. 5), 1–6. https://doi.org/10.1136/sti.2006.024265

Peeling, R. W., Mabey, D., Kamb, M. L., Chen, X., David, J., Benzaken, A. S., Street, K., Hepatitis, V., Union, P., & Hepatitis, V. (2018). Syphilis. Nat Rev Dis Primers., 3(17073), 49. https://doi.org/10.1038/nrdp.2017.73.Syphilis

Penny F. Whiting, Anne WS Rutjes, Marie E. Westwood, Susan Mallett, Jonathan J. Deeks, Johannes B. Reitsma, MD, Mariska MG Leeflang, J. A. S. P. M. B. (2011). QUADAS-2: A revised tool fot the quality assessment of Diagnostic Accuracy Studies. Annals of Internal Medicine, 154(4), 253–260.

Persson, K. (2002). The role of serology, antibiotic susceptibility testing and serovar determination in genital chlamydial infections. Best Practice & Research. Clinical Obstetrics & Gynaecology, 16(6), 801–814. https://doi.org/10.1053/beog.2002.0321

Petra Macaskill, Constantine Gatsonis, J. D., & Roger Harbord, Y. T. (2010). Chapter 10 Analysing and Presenting Results (T. C. Collaboration (ed.); 1st ed.).

Pfeilsticker, J. A., Umeda, A., Farrow, B., Hsueh, C. L., Deyle, K. M., Kim, J. T., Lai, B. T., & Heath, J. R. (2013). A cocktail of thermally stable, chemically synthesized capture agents for the efficient detection of anti-gp41 antibodies from human sera. PloS One, 8(10), e76224. https://doi.org/10.1371/journal.pone.0076224

Phang Romero Casas, C., Martyn-St James, M., Hamilton, J., Marinho, D. S., Castro, R., & Harnan, S. (2018). Rapid diagnostic test for antenatal syphilis screening in low-income and middle-income countries: a systematic review and meta-analysis. BMJ Open, 8(2), e018132. https://doi.org/10.1136/bmjopen-2017-018132

Philipp Doebler. (2020). mada: Meta-Analysis of Diagnostic Accuracy. r-forge.r-project.org/projects/mada/

Reiman, M. P., Thorborg, K., Goode, A. P., Cook, C. E., Weir, A., & Hölmich, P. (2017). Diagnostic Accuracy of Imaging Modalities and Injection Techniques for the Diagnosis of Femoroacetabular Impingement/Labral Tear: A Systematic Review with Meta-analysis. American Journal of Sports Medicine, 45(11), 2665–2677. https://doi.org/10.1177/0363546516686960

Rikhtegaran Tehrani, Z., Azadmanesh, K., Mostafavi, E., Soori, S., Azizi, M., & Khabiri, A. (2015a). Development of an integrase-based ELISA for specific diagnosis of individuals infected with HIV. Journal of Virological Methods, 215–216, 61–66. https://doi.org/10.1016/j.jviromet.2015.02.013

Rikhtegaran Tehrani, Z., Azadmanesh, K., Mostafavi, E., Soori, S., Azizi, M., & Khabiri, A. (2015b). Development of an integrase-based ELISA for specific diagnosis of individuals infected with HIV. Journal of Virological Methods, 215–216, 61–66. https://doi.org/10.1016/j.jviromet.2015.02.013

Runina, A. V, Katunin, G. L., Filippova, M. A., Zatevalov, A. M., Kubanov, A. A., & Deryabin, D. G. (2018). Immunochip for Syphilis Serodiagnostics with the Use of Extended Array of Treponema pallidum Recombinant Antigens. Bulletin of Experimental Biology and Medicine, 165(6), 767–771. https://doi.org/10.1007/s10517-018-4261-0

Sanchez-Trincado, J. L., Gomez-Perosanz, M., & Reche, P. A. (2017). Fundamentals and Methods for T- and B-Cell Epitope Prediction. Journal of Immunology Research, 2017, 1–14. https://doi.org/10.1155/2017/2680160

Santos Junior, M. N., Santos, R. S., Neves, W. S., Fernandes, J. M., De Brito Guimarães, B. C., Barbosa, M. S., Silva, L. S. C., Gomes, C. P., Rezende, I. S., Oliveira, C. N. T., De MacÊdo Neres, N. S., Campos, G. B., Bastos, B. L., Timenetsky, J., & Marques, L. M. (2020). Immunoinformatics and analysis of antigen distribution of Ureaplasma diversum strains isolated from different Brazilian states. BMC Veterinary Research, 16(1), 1–16. https://doi.org/10.1186/s12917-020-02602-1

Sarah C Woodhall et al. (2019). Advancing the public health applications of Chlamydia trachomatis serology. Lancet Infect Dis, 176(3), 139–148. https://doi.org/10.1016/S1473-3099(18)30159-2.Advancing

Serrano, B., Brotons, M., Bosch, F. X., & Bruni, L. (2018). Epidemiology and burden of HPV-related disease. Best Practice and Research: Clinical Obstetrics and Gynaecology, 47, 14–26. https://doi.org/10.1016/j.bpobgyn.2017.08.006

Smith, B. C., Simpson, Y., Morshed, M. G., Cowen, L. L. E., Hof, R., Wetherell, C., & Cameron, C. E. (2013). New proteins for a new perspective on syphilis diagnosis. Journal of Clinical Microbiology, 51(1), 105–111. https://doi.org/10.1128/JCM.01390-12

Smith, B. C., Simpson, Y., Morshed, M. G., Cowen, L. L. E., Hof, R., Wetherell, C., & Camerona, C. E. (2013). New proteins for a new perspective on syphilis diagnosis. Journal of Clinical Microbiology, 51(1), 105–111. https://doi.org/10.1128/JCM.01390-12

Spiteri, G., Unemo, M., & Mårdh, O. (2019). The resurgence of syphilis in high-income countries in the 2000s : a focus on Europe. Epidemiology and Infection, 1, 2–8.

Talha, S. M., Nemani, S. K., Salminen, T., Kumar, S., Swaminathan, S., Soukka, T., Pettersson, K., & Khanna, N. (2012). Escherichia coli-expressed near full length HIV-1 envelope glycoprotein is a highly sensitive and specific diagnostic antigen. BMC Infectious Diseases, 12(1), 1. https://doi.org/10.1186/1471-2334-12-325

Tan, M., Xu, M., Xiao, Y., Xie, Y., Jiang, C., Zheng, K., Chen, Q., Zhao, F., Zeng, T., & Wu, Y. (2018). Screening and identification of immunoactive FlaB protein fragments of Treponema pallidum for the serodiagnosis of syphilis. Pathogens and Disease, 76(2). https://doi.org/10.1093/femspd/ftx122

Thomas, P. P. M., Yadav, J., Kant, R., Ambrosino, E., Srivastava, S., Batra, G., Dayal, A., Masih, N., Pandey, A., Saha, S., Heijmans, R., Lal, J. A., & Morré, S. A. (2019). Sexually transmitted infections and behavioral determinants of sexual and reproductive health in the allahabad district (India) based on data from the chlamindia study. Microorganisms, 7(11). https://doi.org/10.3390/microorganisms7110557

Tiwari, R. P., Jain, A., Khan, Z., Kumar, P., Bhrigu, V., & Bisen, P. S. (2013). Designing of novel antigenic peptide cocktail for the detection of antibodies to HIV-1/2 by ELISA. Journal of Immunological Methods, 387(1–2), 157–166. https://doi.org/10.1016/j.jim.2012.10.009

Tripathi, N. K., & Shrivastava, A. (2019). Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Frontiers in Bioengineering and Biotechnology, 7(December), 1–35. https://doi.org/10.3389/fbioe.2019.00420

Van Den Heuvel, A., Smet, H., Prat, I., Sands, A., Urassa, W., Fransen, K., & Crucitti, T. (2019). Laboratory evaluation of four HIV/syphilis rapid diagnostic tests. BMC Infectious Diseases, 19(1), 1–13. https://doi.org/10.1186/s12879-018-3567-x

Wesley, Hu, R., Hyland, L., Crandall, D., Ramachandran, P., Pangarkar, C., Sivaraman, S., & Haghiri, B. (2018). Expression and characterization of the soluble form of recombinant mature HSV-2 glycoprotein G for use in anti-HSV-2 IgG serodiagnostic immunoassay. Journal of Virological Methods, 252, 65–69. https://doi.org/10.1016/j.jviromet.2017.10.021

WHO (World Health Organization). (2018). Report on global sexually transmitted infection surveillance.

Winstanley, C. E., Ramsey, K. H., Marsh, P., & Clarke, I. N. (2017). Development and evaluation of an enzyme-linked immunosorbent assay for the detection of antibodies to a common urogenital derivative of Chlamydia trachomatis plasmid-encoded PGP3. Journal of Immunological Methods, 445, 23–30. https://doi.org/10.1016/j.jim.2017.03.002

World Health Organization (WHO). (1981). WHO GUIDELINES FOR THE Treatment of Chlamydia trachomatis. Journal of Chemical Information and Modeling, 53(9), 1689–1699.

Xie, Y., Xu, M., Wang, C., Xiao, J., Xiao, Y., Jiang, C., You, X., & Zhao, F. (2016). Diagnostic value of recombinant Tp0821 protein in serodiagnosis for syphilis. Letters in Applied Microbiology I, 62(4), 336–343. https://doi.org/10.1111/lam.12554

Xu, M., Xie, Y., Jiang, C., Xiao, Y., Kuang, X., Zhao, F., Zeng, T., Liu, S., Liang, M., Li, L., Wang, C., & Wu, Y. (2016). A novel ELISA using a recombinant outer membrane protein, rTp0663, as the antigen for serological diagnosis of syphilis. International Journal of Infectious Diseases : IJID : Official Publication of the International Society for Infectious Diseases, 43, 51–57. https://doi.org/10.1016/j.ijid.2015.12.013

Yufenyuy, E. L., & Parekh, B. S. (2018). Development of a Multiplex Assay for Concurrent Diagnoses and Detection of HIV-1, HIV-2, and Recent HIV-1 AIDS Research and Human Retroviruses, 34(12), Infection in a Single Test. 1017–1027. https://doi.org/10.1089/AID.2017.0

Downloads

Published

06/08/2022

How to Cite

SILVA, L. S. C. da; CASTRO, C. T. de; GOMES, C. P. .; SANTOS JÚNIOR, M. N. .; BARBOSA, M. S. .; NEVES, W. S. .; RIBEIRO, V. G. .; CAMPOS, G. B. .; BASTOS, B. L. .; MARQUES, L. M. . Use of recombinant proteins in the diagnosis of sexually transmitted infections: a systematic review and meta-analysis. Research, Society and Development, [S. l.], v. 11, n. 10, p. e433111032974, 2022. DOI: 10.33448/rsd-v11i10.32970. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32970. Acesso em: 3 jan. 2025.

Issue

Section

Health Sciences