Reduction of antibacterial toxicity through nanostructured carriers




Nanotechnology; antibacterials; Toxicity.


Bacterial resistance to antibiotics is a global health problem that needs to be resolved through the discovery of new therapeutic strategies. With the advancement of nanotechnology, new formulations have been tested for the ability to potentiate the action of antibiotics of traditional use by delivering more appropriate concentrations or reducing the toxicity of these drugs. In addition, the advent of nanotechnology has allowed new strategies to be implemented to combat microbial resistance, enabling the development of nanoantibiotics with multifunctional, targeted characteristics, greatly increased bactericidal efficiency, reduced toxicity, decreased adverse side effects, increased bioavailability, decreased dose, reduction of antibacterial concentrations. Nanotechnology has great potential for the development of new and improved antibacterials that benefit human health. The objective of this work was to make a bibliographic survey of the most recent formulations tested in nanotechnology to reduce the toxicity of antimicrobials, especially antibacterials, and/or increase their therapeutic effectiveness.


Abass Sofi, M., Sunitha, S., Ashaq Sofi, M., Khadheer Pasha, S., & Choi, D. (2022). An overview of antimicrobial and anticancer potential of silver nanoparticles. Jornal of King Saud University Science, v.34, p.101791.

Bellotto, O., Semeraro, S., Bandiera, A., Tramer, F., Pavan, N., & Marchesan, S. (2022). Polymer conjugates of antimicrobial peptides (amps) with d-amino acids (d-aa): State of the art and future opportunities. Pharmaceutics, v.14, p. 446.

Chakraborty, S., Chelli, V., Das, R., Giri, A., & Golder, A. (2017). Bio-mediated silver nanoparticle synthesis: mechanism and microbial inactivation. Toxicological and Environmental Chemistry, v.99, p.434–447.

Engin, A. B., & Engin, A. (2019). A novel rational approach to antibiotic resistant infections. Nanoantibiotics, 20(9), 720-741.

Gera, S., Kankuri, E., & Kogermann, K. (2021). Antimicrobial peptides - unleashing their therapeutic potential using nanotechnology. Antimicrobial peptides, v.232, p.107990.

Gopinath, V., Priyadarshini, S., Al-Maleki, A., Alagiri, M., Yahya, R., Saravanan, S., & Vadivelu, J. (2016). In vitro toxicity, apoptosis and antimicrobial effects of phyto-mediated copper oxide nanoparticles. RSC Advances, v.6, p. 110986–110995.

Guo, P., Xue, H.-Y., & Wong, H.-L. (2018). Therapeutic Nanotechnology for Bone Infection Treatment - State of the Art. Curr Drug Deliv, v.15, n.7, p.941-952.

Haitao, Y., Yifan, C., Mingchao, S., & Shuaijuan, H. (2022). A novel polymeric nanohybrid antimicrobial engineered by antimicrobial peptide mccj25 and chitosan nanoparticles exerts strong antibacterial and anti-inflammatory activities. Frontiers in Immunology, v.12, p.811381.

Huang, T., Sui, M., Yan, X., Zhang, X., & Yuan, Z. (2016). Anti-algae efficacy of silver nanoparticles to microcystis aeruginosa: Influence of nom, divalent cations, and ph. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 509, p. 492–503.

Ivashchenko, O., Coy, E., Peplinska, B., Jarek, M., Lewandowski, M., Zaleski, K., Warowicka, A., Wozniak, A., Babutina, T., Jurga-Stopa, J., Dolinsek, J., & Jurga, S. (2017). Influence of silver content on rifampicin adsorptivity for magnetite/ag/rifampicin nanoparticles. NANOTECHNOLOGY, v.28, p.5.

Javia, A., Amrutiya, J., Lalani, R., Patel, V., Bhatt, P., & Misra, A. (2018). Antimicrobial peptide delivery: An emerging therapeutic for the treatment of burn and wounds. Therapeutic Delivery, v 9, p.375–386.

Khosravian, P., Khoobi, M., Ardestani, M. S., Daryasari, M. P., Hassanzadeh, M., GhasemiDehkordi, P., Amanlou, M., & Javar, H. A. (2018). Enhancement antimicrobial activity of clarithromycin by amine functionalized mesoporous silica nanoparticles as drug delivery system. LETTERS IN DRUG DESIGN & DISCOVERY, v.15, p. 787–795.

Kumar, M. S., & Das, A. P. (2017). Emerging nanotechnology based strategies for diagnosis and therapeutics of urinary tract infections. Adv Colloid Interface Sci, v.249, p.53-65

Lim, Y. H., Tiemann, K. M., Heo, G. S., Wagers, P. O., Rezenom, Y. H., Zhang, S., Zhang, F., Youngs, W. J., Hunstad, D. A., & Wooley, K. L. (2015). Preparation and in vitro antimicrobial activity of silver-bearing degradable polymeric nanoparticles of polyphosphoester-block-poly(l-lactide). ACS NANO, v.9, p. 1995–2008.

Mendes, K. D. S.; Silveira, R. C. C. P. & Galvão, C. M (2008). Revisão integrativa: método de pesquisa para a incorporação de evidências na saúde e na enfermagem. Texto contexto - enferm, 17(4).

Mishra, A. R., Zheng, J., Tang, X., & Goering, P. L. (2016). Silver nanoparticle-induced autophagic-lysosomal disruption and nlrp3-inflammasome activation in hepg2 cells is sizedependent. TOXICOLOGICAL SCIENCES, v.150, p. 473–487.

Nainu, F., Permana, A., Djide, N., Anjani, Q., Utami, R., Rumata, N., Zhang, J.-Y., Emran, T., & Simal-Gandara, J. (2021). Pharmaceutical approaches to antimicrobial resistance: prospects and challenges, Antibiotics, v.10, p. 981.

Nawaz, A., Ali, S. M., Rana, N. F., Tanweer, T., Batool, A., Webster, T. J., Menaa, F., Riaz, S., Rehman, Z., Batool, F., Fatima, M., Maryam, T., Shafique, I., Saleem, A., & Iqbal, A. (2021). Ciprofloxacin-loaded gold nanoparticles against antimicrobial resistance: An in vivo assessment. NANOMATERIALS, 11.

Salam, H. S. H., Mohamed, W. M. S., Aziz, S. A. A. A., Mohammed, A. N., & Korni, F. M. M. (2021). Prevention of motile aeromonas septicemia in nile tilapia, oreochromis niloticus, using thyme essential oil and its nano-emlusion. AQUACULTURE INTERNATIONAL, v. 29, p.2065–2084.

Singh, I., Priyam, A., Jha, D., Dhawan, G., Gautam, H. K., & Kumar, P. (2020). Polydopamine -aminoglycoside nanoconjugates: Synthesis, characterization, antimicrobial evaluation and cytocompatibility. MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 107.

Staron, A. & Dlugosz, O. (2021). Antimicrobial properties of nanoparticles in the context of advantages and potential risks of their use. J Environ Sci Health A Tox Hazard Subst Environ Eng, 56(6), 680-693.

Swaminathan, M., & Sharma, N. (2019). Antimicrobial activity of the engineered nanoparticles used as coating agents. Springer International Publishing, v.1, p.549–563.

Wang, D.-Y., van der Mei, H. C., Ren, Y., Busscher, H. J., & Shi, L. (2019). Lipid-based antimicrobial delivery-systems for the treatment of bacterial infections. Front Chem, 10(7), .872.



How to Cite

REIS, M. S. .; SOUSA, J. N. de; VELOSO, R. P.; RODRIGUES, L. G.; ROLIM, H. M. L. Reduction of antibacterial toxicity through nanostructured carriers . Research, Society and Development, [S. l.], v. 11, n. 11, p. e72111133277, 2022. DOI: 10.33448/rsd-v11i11.33277. Disponível em: Acesso em: 7 oct. 2022.



Review Article