Reducción de la toxicidad antibacteriana a través de vehículos nanoestructurados

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i11.33277

Palabras clave:

Nanotecnología; Antibacterianos; Toxicidad; Toxicidad.

Resumen

La resistencia bacteriana a los antibióticos es un problema de salud mundial que debe resolverse mediante el descubrimiento de nuevas estrategias terapéuticas, concentraciones más adecuadas o disminución de la toxicidad de estos fármacos. Además, el advenimiento de la nanotecnología ha permitido que se implementen nuevas estrategias para combatir la resistencia microbiana, posibilitando el desarrollo de nanoantibióticos con características multifuncionales específicas, eficiencia bactericida muy aumentada, toxicidad reducida, efectos secundarios adversos disminuidos, biodisponibilidad aumentada, dosis reducida, reducción de concentraciones antibacterianas. La nanotecnología tiene un gran potencial para el desarrollo de antibacterianos nuevos y mejorados que benefician la salud humana. El objetivo de este trabajo fue realizar un levantamiento bibliográfico de las más recientes formulaciones probadas en nanotecnología para reducir la toxicidad de los antimicrobianos, especialmente los antibacterianos, y/o aumentar su eficacia terapéutica.

Citas

Abass Sofi, M., Sunitha, S., Ashaq Sofi, M., Khadheer Pasha, S., & Choi, D. (2022). An overview of antimicrobial and anticancer potential of silver nanoparticles. Jornal of King Saud University Science, v.34, p.101791.

Bellotto, O., Semeraro, S., Bandiera, A., Tramer, F., Pavan, N., & Marchesan, S. (2022). Polymer conjugates of antimicrobial peptides (amps) with d-amino acids (d-aa): State of the art and future opportunities. Pharmaceutics, v.14, p. 446.

Chakraborty, S., Chelli, V., Das, R., Giri, A., & Golder, A. (2017). Bio-mediated silver nanoparticle synthesis: mechanism and microbial inactivation. Toxicological and Environmental Chemistry, v.99, p.434–447.

Engin, A. B., & Engin, A. (2019). A novel rational approach to antibiotic resistant infections. Nanoantibiotics, 20(9), 720-741.

Gera, S., Kankuri, E., & Kogermann, K. (2021). Antimicrobial peptides - unleashing their therapeutic potential using nanotechnology. Antimicrobial peptides, v.232, p.107990.

Gopinath, V., Priyadarshini, S., Al-Maleki, A., Alagiri, M., Yahya, R., Saravanan, S., & Vadivelu, J. (2016). In vitro toxicity, apoptosis and antimicrobial effects of phyto-mediated copper oxide nanoparticles. RSC Advances, v.6, p. 110986–110995.

Guo, P., Xue, H.-Y., & Wong, H.-L. (2018). Therapeutic Nanotechnology for Bone Infection Treatment - State of the Art. Curr Drug Deliv, v.15, n.7, p.941-952.

Haitao, Y., Yifan, C., Mingchao, S., & Shuaijuan, H. (2022). A novel polymeric nanohybrid antimicrobial engineered by antimicrobial peptide mccj25 and chitosan nanoparticles exerts strong antibacterial and anti-inflammatory activities. Frontiers in Immunology, v.12, p.811381.

Huang, T., Sui, M., Yan, X., Zhang, X., & Yuan, Z. (2016). Anti-algae efficacy of silver nanoparticles to microcystis aeruginosa: Influence of nom, divalent cations, and ph. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 509, p. 492–503.

Ivashchenko, O., Coy, E., Peplinska, B., Jarek, M., Lewandowski, M., Zaleski, K., Warowicka, A., Wozniak, A., Babutina, T., Jurga-Stopa, J., Dolinsek, J., & Jurga, S. (2017). Influence of silver content on rifampicin adsorptivity for magnetite/ag/rifampicin nanoparticles. NANOTECHNOLOGY, v.28, p.5.

Javia, A., Amrutiya, J., Lalani, R., Patel, V., Bhatt, P., & Misra, A. (2018). Antimicrobial peptide delivery: An emerging therapeutic for the treatment of burn and wounds. Therapeutic Delivery, v 9, p.375–386.

Khosravian, P., Khoobi, M., Ardestani, M. S., Daryasari, M. P., Hassanzadeh, M., GhasemiDehkordi, P., Amanlou, M., & Javar, H. A. (2018). Enhancement antimicrobial activity of clarithromycin by amine functionalized mesoporous silica nanoparticles as drug delivery system. LETTERS IN DRUG DESIGN & DISCOVERY, v.15, p. 787–795.

Kumar, M. S., & Das, A. P. (2017). Emerging nanotechnology based strategies for diagnosis and therapeutics of urinary tract infections. Adv Colloid Interface Sci, v.249, p.53-65

Lim, Y. H., Tiemann, K. M., Heo, G. S., Wagers, P. O., Rezenom, Y. H., Zhang, S., Zhang, F., Youngs, W. J., Hunstad, D. A., & Wooley, K. L. (2015). Preparation and in vitro antimicrobial activity of silver-bearing degradable polymeric nanoparticles of polyphosphoester-block-poly(l-lactide). ACS NANO, v.9, p. 1995–2008.

Mendes, K. D. S.; Silveira, R. C. C. P. & Galvão, C. M (2008). Revisão integrativa: método de pesquisa para a incorporação de evidências na saúde e na enfermagem. Texto contexto - enferm, 17(4).

Mishra, A. R., Zheng, J., Tang, X., & Goering, P. L. (2016). Silver nanoparticle-induced autophagic-lysosomal disruption and nlrp3-inflammasome activation in hepg2 cells is sizedependent. TOXICOLOGICAL SCIENCES, v.150, p. 473–487.

Nainu, F., Permana, A., Djide, N., Anjani, Q., Utami, R., Rumata, N., Zhang, J.-Y., Emran, T., & Simal-Gandara, J. (2021). Pharmaceutical approaches to antimicrobial resistance: prospects and challenges, Antibiotics, v.10, p. 981.

Nawaz, A., Ali, S. M., Rana, N. F., Tanweer, T., Batool, A., Webster, T. J., Menaa, F., Riaz, S., Rehman, Z., Batool, F., Fatima, M., Maryam, T., Shafique, I., Saleem, A., & Iqbal, A. (2021). Ciprofloxacin-loaded gold nanoparticles against antimicrobial resistance: An in vivo assessment. NANOMATERIALS, 11.

Salam, H. S. H., Mohamed, W. M. S., Aziz, S. A. A. A., Mohammed, A. N., & Korni, F. M. M. (2021). Prevention of motile aeromonas septicemia in nile tilapia, oreochromis niloticus, using thyme essential oil and its nano-emlusion. AQUACULTURE INTERNATIONAL, v. 29, p.2065–2084.

Singh, I., Priyam, A., Jha, D., Dhawan, G., Gautam, H. K., & Kumar, P. (2020). Polydopamine -aminoglycoside nanoconjugates: Synthesis, characterization, antimicrobial evaluation and cytocompatibility. MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 107.

Staron, A. & Dlugosz, O. (2021). Antimicrobial properties of nanoparticles in the context of advantages and potential risks of their use. J Environ Sci Health A Tox Hazard Subst Environ Eng, 56(6), 680-693.

Swaminathan, M., & Sharma, N. (2019). Antimicrobial activity of the engineered nanoparticles used as coating agents. Springer International Publishing, v.1, p.549–563.

Wang, D.-Y., van der Mei, H. C., Ren, Y., Busscher, H. J., & Shi, L. (2019). Lipid-based antimicrobial delivery-systems for the treatment of bacterial infections. Front Chem, 10(7), .872.

Publicado

15/08/2022

Cómo citar

REIS, M. S. .; SOUSA, J. N. de; VELOSO, R. P.; RODRIGUES, L. G.; ROLIM, H. M. L. Reducción de la toxicidad antibacteriana a través de vehículos nanoestructurados. Research, Society and Development, [S. l.], v. 11, n. 11, p. e72111133277, 2022. DOI: 10.33448/rsd-v11i11.33277. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33277. Acesso em: 5 ene. 2025.

Número

Sección

Revisiones