Português (Brasil) Use of reuse water as a replacement for water loss in cooling towers





Environmental sustainability; Water reuse; Cooling tower; WWTP.


The reuse of water is a global necessity due to the growth of population and economic demand. The lack of concern for natural sources of water, climate change, and consumption habits end up causing a decrease in drinking water. World organizations demonstrate this situation, the World Health Organization (WHO), in a report, points out that almost 663 million people in the world live without access to drinking water and also the United Nations (UN), says by 2050, six billion people will have no access either. This situation has led several countries to create alternative water reuse processes, aiming at saving this kind of water for the exclusive purpose of human needs. The objective of this work was to conduct a study showing the reuse of water collected from rainwater, air conditioning systems and also from sinks and showers of a business building and sent to a reuse water treatment plant (WWTP), to be reused later as replacement of water loss in four cooling towers. The structure of the cooling towers and the processes of the WWTP are presented. It demonstrated, through spreadsheets, the experimental data collected from the capture of reuse water, obtained in several areas of the building studied, from January to december 2021. The theoretical study was complemented with the development of mathematical calculations and concluded that there was a capture of reuse water of 10,828 m³/year and a loss of water by the towers of 17,280 m³/year.


Abdullah, M. A., & Mursalin, R. (2021). Condensed water recycling in an air conditioning unit. Journal of Mechanical and Civil Engineering (IOSR-JMCE). 18(3). Ser. II, 13-19.

Albolafio, S., Marín, A., Allende, A., García, F., Simón-Andreu , P. J., Soler. M. A., & Gil, M. I. (2022). Strategies for mitigating chlorinated disinfection byproducts in wastewater treatment plants. Chemosphere. 288. 132583. https://doi.org/10.1016/j.chemosphere.2021.132583.

Allen, L., Christian-Smith, J., & Palaniappan, M. (2010). Overview of greywater reuse: The potential of greywater systems to aid sustainable water management. Pacific Institute California: USA. 978-1-893790-29-2.

Alpina Equipamentos. (2019). Perdas de água em torres de resfriamento. https://www.alpinaequipamentos.com.br/publicacao/perdas-de-agua-em-torres-de-resfriamento/2.

Armeanu, D., Vintilă, G., & Gherghina, Ş. (2017). Does renewable energy drive sustainable economic growth? Multivariate panel data evidence for EU-28 countries. Energies. 10(3). 381. 10,3390/en10030381.

Bazzarella, B. B. (2005). Caracterização e aproveitamento de água cinza para uso não-potável em edificações. 150 f. Dissertação de Mestrado. Universidade Federal do Espirito Santo.

Beomjoon, L., Chul, W. R., Bong, S. C., Eunseok, W., Ho-Sang, R., Junhyun, C., Jongjae, C., Hyungki, S., Jong, W. C., & Gilbong, L. (2020). Experimental evaluations on the outdoor air-based methods for water saving and plume abatement of cooling tower. International Journal of Low-Carbon Technologies. 15. 421–426. 10.1093/ijlct/ctz078.

Bernauer, T., & Böhmelt, T. (2020). International conflict and cooperation over freshwater resources. Nat Sustain. 3, 350–356. https://doi.org/10.1038/s 41893-020-0479-8.

Biswas, A. K. (1999). Management of international waters: Opportunities and constraints. International Journal of Water Resources Development. 15(4), 429–441. 10.1080/07900629948691.

Boano, F., Caruso, A., Costamagna, E., Ridolfi, L., Foire, S., Demichelis, F., Galvão, A., Pisoeiro, J., Rizzo, A., & Masi. F. (2020). A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Science of The Total Environment. 711, 134731. https://doi.org/10.1016/j.scitotenv.2019.134731.

Boretti, A., & Rosa, L. (2019). Reassessing the projections of the world water development report. npj Clean Water 2(15) https://doi.org/10.1038/s 41545-019-0039-9.

Brasil. Águas do Brasil. (2020). Reuso- Instrumento de um novo modelo de gestão das águas.https://aguasdobrasil.org/artigo/reuso/.

Cardoso, B. J., Rodrigues, E., Gaspar, A. R., & Gomes, A. (2021). Energy performance factors in wastewater treatment plants: A review. Journal of Cleaner Production. 322. 129107. https://doi.org/10.1016/j.jclepro.2021.129107.

Cheng, Y., Niu, J., Liu, X., & Gao, N. (2013). Experimental and numerical investigations on stratified air distribution systems with special configuration: Thermal comfort and energy saving. Energy and Buildings. 64, 154–161. https://doi.org/10.1016/j.enbuild.2013.04.026.

CIIAGRO- Centro Integrado de Informações Agrometeorologias. (2019). http://www.ciiagro.sp.gov.br/ciiagroonline/quadros/qchuvaperio do.asp.

Climatempo. (2022). https://www.climatempo.com.br/climatologia/540/santos-sp.

Deziane, M., Rahmani, K. H., Roudaki, S. J. M., & Kordloo, M. (2015). Feasibility study for reduce water evaporative loss in a power plant cooling tower by using air to air heat exchanger with auxiliary fan. Desalination. 406. http://dx.doi.org/10.1016/j.desal.2015.12.007.

Fernandes, L. F. S., Terêncio, D. P. S., & Pacheco, F. A. L. (2015). Rainwater harvesting systems for low demanding applications. Science of The Total Environment. 529, 91-100. https://doi.org/10.1016/j.scitotenv.2015.05.061.

Fiori, S., Fernandes, V. M. C., & Pizzo, H. (2006). Avaliação qualitativa e quantitativa do reuso de águas cinzas em edificações. Ambiente Construído. 6(1). 19-30.

Graziano, J. (2017). Escassez de água, desafio à sustentabilidade. Valor Econômico. São Paulo. Opinião. 27 mar. http//www.valor.com.br/opiniao/ 4914566/escassez-de-agua-desafio-sustentabilidade.

Grünwald, R., Feng, Y., & Wang, W. (2020). Reconceptualization of the transboundary water interaction nexus (TWINS): approaches, opportunities and challenges. Water International. 45(5). 1-21. 10.1080/02508060.2020.1780854.

Hadjikakou, M., Stanford, B. D, Wiedmann, T., Rowley, H. V., Kobayashi, Y., Ishii, S., Gaitan, J. P. A., Johns, G., Lundie, S., & Khan, S. J. (2019). A flexible framework for assessing the sustainability of alternative water supply options. Science of The Total Environment. 671, 1257–1268. 10.1016/j.scitotenv.2019.03.288.

Halkos, G. E., & Gkampoura, E. C. (2020). Reviewing usage, potentials, and limitations of renewable energy sources. Energies. 13 (11). 2906. 10.3390/en13112906.

Hashemi, F., Hashemi, H., Shahbazi, M., Dehghani, M., Hoseini, M., & Shafeie, A. (2020). Reclamation of real oil refinery effluent as makeup water in cooling towers using ultrafiltration, ion exchange and multioxidant disinfectant. Water Resources and Industry. 23, 100123. https://doi.org/10.1016/j.wri.2019.100123.

Hespanhol, I. (2002). Potencial de reuso de água no Brasil: agricultura, indústria, municípios, recarga de aquíferos. Revista Brasileira de Recursos Hídricos. 7(4). 75-95.

Hogeboom, R. J. (2020). The water footprint concept and water’s grand environmental challenges. One Earth. 2(3), 218–222. 10.1016/j.oneear.2020.02.010.

INMET- Instituto Nacional de Meteorologia. (2019). Normas Climatológicas do Brasil no período de 1961 a 1990- Precipitação Acumulada Mensal e Anual (mm). www.inmet.gov.br/webcdp/.../1961.../Precipitacao-Acumulada_NCB_1961-1990.xls.

Karim, R. M. D., Sakib, S. B. M., Sakib, S. S. K., & Imteaz, M. A. (2021). Rainwater harvesting potentials in commercial buildings in Dhaka: Reliability and economic analysis. Hydrology. 8, 1-16. https://doi.org/10.3390/hydrology8010009.

Kim, R. H., Lee, S., Jeong, J., Lee, J. H., & Kim, Y. K. (2007). Reuse of greywater and rainwater using fiber filter media and metal membrane. Desalination. 202, 326–332. https://doi.org/10.1016/j.desal.2005.12.071.

Li, F., Wichmann, K., & Otterpohl, R. (2009). Review of the technological approaches for grey water treatment and reuses. Science of the Total Environment. 407. 11, 3439 – 49. March. 10.1016/j.scitotenv.2009.02.004.

Luqman, M., & Al-Ansari, T. (2021). A novel integrated wastewater recovery, clean water production and air-conditioning system. Energy Conversion and Management. v. 244. September. 114525. https://doi.org/10.1016/j.enconman.2021.114525.

Macedonio, F., Drioli, E., Gusev, A. A., Bardowe, A., Semiatf, R., & Kurihara, M. (2012). Efficient technologies for worldwide clean water supply. 51, 2-17. https://doi.org/10.1016/j. cep. 2011. 09.011.

Manna, S. (2018). Treatment of gray water for reusing in non-potable purpose to conserve water in India. International Journal of Applied Environmental Sciences. 13(8), 703-16.

March, J., Gual, M., & Orozco, F. (2004). Experiences on greywater re-use for toilet flushing in a hotel (Mallorca Island, Spain). Desalination. 164(3), 241–47. https://doi.org/10.1016/S0011-9164(04)00192-4.

Masi, F., Rizzo, A., & Regelsberger, M. (2018). The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. Journal of Environmental Management. 216, 275-284. https://doi.org/10.1016/j.jenv man.2017. 11.086.

Mierzwa, J. C., & Hespanhol, I. (2005). Água na Indústria: Uso Racional e Reuso. SP. Ed. Oficina de Textos.

Mierzwa, J. C., Hespanhol, I., Silva, M. C. C., & Rodrigues, L. B. (2007). Águas pluviais: métodos de cálculo do reservatório e conceitos para um aproveitamento adequado. Rega. 4(1). 29-37.

Moriarty, P., & Honnery, D. (2019). Global renewable energy resources and use in 2050. Managing Global Warming. 221–235. 10.1016/b978-0-12-814104-5.00006-5.

Olender, A. (2014). Tabelas termodinâmicas.file:///C:/Users/quali/Downloads/PME3398%20-%20Tabelas%20Termodin%C3%A2micas.pdf.

Revel, G. M., & Arnesano, M. (2014). Perception of the thermal environment in sports facilities through subjective approach. Building and Environment. 77, 12–19. https://doi.org/10.1016/j.buildenv.2014.03.017.

Ricart, S., & Rico, A. M. (2019). Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor. Agricultural Water Management. 217, 426-439. 10.1016/j.agwat.2019.03.017.

Roshan, A., & Kumar, M. (2020). Water end-use estimation can support the urban water crisis management: A critical review. Journal of Environmental Management. 268. 110663. 10.1016/j.jenvman.2020.110663.

Shafiei, M., Moosavirad, S. H., Azimifard, A., & Biglari, S. (2020). Water consumption assessment in Asian chemical industries supply chains based on input–output analysis and one-way analysis of variance. Environmental Science and Pollution Research. 27. 12242–12255. https://doi.org/10.1007/s11356-020-07707-6.

Shoushtarian, F., & Negahban-Azar, M. (2020). Worldwide regulations and guidelines for agricultural water reuse: A Critical Review. Water. 12, 971. https://doi.org/10.3390/w12040971.

Shublaq, M., & Sleiti, A. K. (2020). Experimental analysis of water evaporation losses in cooling towers using filters. Applied Thermal Engineering. v. 175. July. 115418. https://doi.org/10.1016/j.applthermaleng.2020.115418.

Taghian D. S., & Ahmadikia, H. (2017). Retrofit of a wet cooling tower in order to reduce water and fan power consumption using a wet/dry approach. Applied Thermal Engineering. 125, 1002–1014. 10.1016/j.applthermaleng.2017.07.069.

Tomaz, P. (2011). Aproveitamento de água de chuva em áreas urbanas para fins não potáveis. 85-87678-23-X.

Tzanakakis, V. A., Paranychianakis, N. V., & Angelakis, A. N. (2020). Water supply and water scarcity. Water. 12(9), 2347. 10.3390/w12092347.

Viggiano, M. H. S. (2005). Sistemas de reuso das águas cinzas. Revista Téchne. São Paulo:SP. Pini, ano 13(98), 76-79.

Zeitoun, M., Mirumachi, N., Warner, J., Kirkegaard, M., & Cascão, A. (2019). Analysis for water conflict transformation. Water International.45(2), 1–20. 10.1080/02508060. 201.1607479.

Zhu, Q., Zhang, B., Chen, Q., He, C., Foo, D.C.Y., Ren, J., & Yu, H. (2020). Model reductions for multiscale stochastic optimization of cooling water system equipped with closed wet cooling towers. Chemical Engineering Science. 224. https://doi.org/10.1016/j.ces.2020.115773.

Wagner, T. V., Parsons, J. R., Rijnaarts, H. H. M., de Voogt, P., & Langenhoff, A. A. M. (2019). A review on the removal of conditioning chemicals from cooling tower water in constructed wetlands. Critical Reviews in Environmental Science and Technology. 48, 19-21. 10.1080/10643389.2018.1512289.

Wang, Y., Zhou, Y., Franz, K., Zhang, X., Ding, K. J., Jia, G., & Yuan,X. (2021). An agent-based framework for high-resolution modeling of domestic water use. Resources. Conservation and Recycling. 169, 105520. https://doi.org/10.1016/j. resconrec.2021.105520.

Wei, T. (2017). Application of reclaimed water reuse technology in office buildings. Revista de la Facultad de Ingeniería Universidad Central de Venezuela. 32(12). 129-136.

WJW Foundation. (2018). Water reuse practice guide. Charles Pankow Foundation. PO. Box 820631. Vancouver. WA:US.

WWAP. (2018). World water assessment programme (Nations Unies). The United Nations World Water Development Report 2018 (United Nations Educational. Scientific and Cultural Organization. New York, United States). www.unwater.org/publications/world-water-development-report-2018/



How to Cite

MARQUES, G. I.; NIZZOLI FILHO, I.; SANTOS, A. R. Português (Brasil) Use of reuse water as a replacement for water loss in cooling towers. Research, Society and Development, [S. l.], v. 11, n. 11, p. e98111133367, 2022. DOI: 10.33448/rsd-v11i11.33367. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33367. Acesso em: 3 oct. 2022.