Português (Brasil) Uso de agua de reúso como reemplazo de agua perdida en torres de enfriamiento

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i11.33367

Palabras clave:

Sostenibilidad del medio ambiente; Reutilización de agua; Torre de enfriamiento; EDAR.

Resumen

La reutilización del agua es una necesidad mundial debido al crecimiento de la población, así como de la demanda económica. La falta de preocupación por las fuentes naturales de agua, el cambio climático y los hábitos de consumo terminan provocando una disminución del agua potable. Organismos mundiales dan cuenta de esta situación, la Organización Mundial de la Salud (OMS), en un informe, señala que casi 663 millones de personas en el mundo viven actualmente sin acceso al agua potable y la Organización de las Naciones Unidas (ONU), cita que para 2050 seis mil millones de personas se quedarán sin agua potable. Esta situación ha llevado a varios países a crear procesos alternativos de reutilización de agua con el objetivo de ahorrar agua potable para el uso exclusivo de las necesidades humanas. El objetivo de este trabajo fue realizar un estudio que muestre la reutilización de agua recolectada de la lluvia, sistemas de aire acondicionado y de fregaderos y duchas de un edificio comercial y dirigida a una planta de tratamiento de agua de reutilización (EDAR), para luego ser reutilizada como reposición de pérdida de agua en cuatro torres de enfriamiento. Se han presentado la estructura de las torres de enfriamiento y los procesos de la EDAR. Se han demostrado a partir de hojas de cálculo, los datos experimentales recolectados de la captación del agua de reúso, obtenidos en varias áreas del edificio estudiado, de enero a diciembre de 2021. El estudio teórico se complementó con el desarrollo de cálculos matemáticos y se concluyó que hubo una captación de agua de reúso de 10.828 m³/año y una pérdida de agua por las torres de 17.280 m³/año.

Citas

Abdullah, M. A., & Mursalin, R. (2021). Condensed water recycling in an air conditioning unit. Journal of Mechanical and Civil Engineering (IOSR-JMCE). 18(3). Ser. II, 13-19.

Albolafio, S., Marín, A., Allende, A., García, F., Simón-Andreu , P. J., Soler. M. A., & Gil, M. I. (2022). Strategies for mitigating chlorinated disinfection byproducts in wastewater treatment plants. Chemosphere. 288. 132583. https://doi.org/10.1016/j.chemosphere.2021.132583.

Allen, L., Christian-Smith, J., & Palaniappan, M. (2010). Overview of greywater reuse: The potential of greywater systems to aid sustainable water management. Pacific Institute California: USA. 978-1-893790-29-2.

Alpina Equipamentos. (2019). Perdas de água em torres de resfriamento. https://www.alpinaequipamentos.com.br/publicacao/perdas-de-agua-em-torres-de-resfriamento/2.

Armeanu, D., Vintilă, G., & Gherghina, Ş. (2017). Does renewable energy drive sustainable economic growth? Multivariate panel data evidence for EU-28 countries. Energies. 10(3). 381. 10,3390/en10030381.

Bazzarella, B. B. (2005). Caracterização e aproveitamento de água cinza para uso não-potável em edificações. 150 f. Dissertação de Mestrado. Universidade Federal do Espirito Santo.

Beomjoon, L., Chul, W. R., Bong, S. C., Eunseok, W., Ho-Sang, R., Junhyun, C., Jongjae, C., Hyungki, S., Jong, W. C., & Gilbong, L. (2020). Experimental evaluations on the outdoor air-based methods for water saving and plume abatement of cooling tower. International Journal of Low-Carbon Technologies. 15. 421–426. 10.1093/ijlct/ctz078.

Bernauer, T., & Böhmelt, T. (2020). International conflict and cooperation over freshwater resources. Nat Sustain. 3, 350–356. https://doi.org/10.1038/s 41893-020-0479-8.

Biswas, A. K. (1999). Management of international waters: Opportunities and constraints. International Journal of Water Resources Development. 15(4), 429–441. 10.1080/07900629948691.

Boano, F., Caruso, A., Costamagna, E., Ridolfi, L., Foire, S., Demichelis, F., Galvão, A., Pisoeiro, J., Rizzo, A., & Masi. F. (2020). A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Science of The Total Environment. 711, 134731. https://doi.org/10.1016/j.scitotenv.2019.134731.

Boretti, A., & Rosa, L. (2019). Reassessing the projections of the world water development report. npj Clean Water 2(15) https://doi.org/10.1038/s 41545-019-0039-9.

Brasil. Águas do Brasil. (2020). Reuso- Instrumento de um novo modelo de gestão das águas.https://aguasdobrasil.org/artigo/reuso/.

Cardoso, B. J., Rodrigues, E., Gaspar, A. R., & Gomes, A. (2021). Energy performance factors in wastewater treatment plants: A review. Journal of Cleaner Production. 322. 129107. https://doi.org/10.1016/j.jclepro.2021.129107.

Cheng, Y., Niu, J., Liu, X., & Gao, N. (2013). Experimental and numerical investigations on stratified air distribution systems with special configuration: Thermal comfort and energy saving. Energy and Buildings. 64, 154–161. https://doi.org/10.1016/j.enbuild.2013.04.026.

CIIAGRO- Centro Integrado de Informações Agrometeorologias. (2019). http://www.ciiagro.sp.gov.br/ciiagroonline/quadros/qchuvaperio do.asp.

Climatempo. (2022). https://www.climatempo.com.br/climatologia/540/santos-sp.

Deziane, M., Rahmani, K. H., Roudaki, S. J. M., & Kordloo, M. (2015). Feasibility study for reduce water evaporative loss in a power plant cooling tower by using air to air heat exchanger with auxiliary fan. Desalination. 406. http://dx.doi.org/10.1016/j.desal.2015.12.007.

Fernandes, L. F. S., Terêncio, D. P. S., & Pacheco, F. A. L. (2015). Rainwater harvesting systems for low demanding applications. Science of The Total Environment. 529, 91-100. https://doi.org/10.1016/j.scitotenv.2015.05.061.

Fiori, S., Fernandes, V. M. C., & Pizzo, H. (2006). Avaliação qualitativa e quantitativa do reuso de águas cinzas em edificações. Ambiente Construído. 6(1). 19-30.

Graziano, J. (2017). Escassez de água, desafio à sustentabilidade. Valor Econômico. São Paulo. Opinião. 27 mar. http//www.valor.com.br/opiniao/ 4914566/escassez-de-agua-desafio-sustentabilidade.

Grünwald, R., Feng, Y., & Wang, W. (2020). Reconceptualization of the transboundary water interaction nexus (TWINS): approaches, opportunities and challenges. Water International. 45(5). 1-21. 10.1080/02508060.2020.1780854.

Hadjikakou, M., Stanford, B. D, Wiedmann, T., Rowley, H. V., Kobayashi, Y., Ishii, S., Gaitan, J. P. A., Johns, G., Lundie, S., & Khan, S. J. (2019). A flexible framework for assessing the sustainability of alternative water supply options. Science of The Total Environment. 671, 1257–1268. 10.1016/j.scitotenv.2019.03.288.

Halkos, G. E., & Gkampoura, E. C. (2020). Reviewing usage, potentials, and limitations of renewable energy sources. Energies. 13 (11). 2906. 10.3390/en13112906.

Hashemi, F., Hashemi, H., Shahbazi, M., Dehghani, M., Hoseini, M., & Shafeie, A. (2020). Reclamation of real oil refinery effluent as makeup water in cooling towers using ultrafiltration, ion exchange and multioxidant disinfectant. Water Resources and Industry. 23, 100123. https://doi.org/10.1016/j.wri.2019.100123.

Hespanhol, I. (2002). Potencial de reuso de água no Brasil: agricultura, indústria, municípios, recarga de aquíferos. Revista Brasileira de Recursos Hídricos. 7(4). 75-95.

Hogeboom, R. J. (2020). The water footprint concept and water’s grand environmental challenges. One Earth. 2(3), 218–222. 10.1016/j.oneear.2020.02.010.

INMET- Instituto Nacional de Meteorologia. (2019). Normas Climatológicas do Brasil no período de 1961 a 1990- Precipitação Acumulada Mensal e Anual (mm). www.inmet.gov.br/webcdp/.../1961.../Precipitacao-Acumulada_NCB_1961-1990.xls.

Karim, R. M. D., Sakib, S. B. M., Sakib, S. S. K., & Imteaz, M. A. (2021). Rainwater harvesting potentials in commercial buildings in Dhaka: Reliability and economic analysis. Hydrology. 8, 1-16. https://doi.org/10.3390/hydrology8010009.

Kim, R. H., Lee, S., Jeong, J., Lee, J. H., & Kim, Y. K. (2007). Reuse of greywater and rainwater using fiber filter media and metal membrane. Desalination. 202, 326–332. https://doi.org/10.1016/j.desal.2005.12.071.

Li, F., Wichmann, K., & Otterpohl, R. (2009). Review of the technological approaches for grey water treatment and reuses. Science of the Total Environment. 407. 11, 3439 – 49. March. 10.1016/j.scitotenv.2009.02.004.

Luqman, M., & Al-Ansari, T. (2021). A novel integrated wastewater recovery, clean water production and air-conditioning system. Energy Conversion and Management. v. 244. September. 114525. https://doi.org/10.1016/j.enconman.2021.114525.

Macedonio, F., Drioli, E., Gusev, A. A., Bardowe, A., Semiatf, R., & Kurihara, M. (2012). Efficient technologies for worldwide clean water supply. 51, 2-17. https://doi.org/10.1016/j. cep. 2011. 09.011.

Manna, S. (2018). Treatment of gray water for reusing in non-potable purpose to conserve water in India. International Journal of Applied Environmental Sciences. 13(8), 703-16.

March, J., Gual, M., & Orozco, F. (2004). Experiences on greywater re-use for toilet flushing in a hotel (Mallorca Island, Spain). Desalination. 164(3), 241–47. https://doi.org/10.1016/S0011-9164(04)00192-4.

Masi, F., Rizzo, A., & Regelsberger, M. (2018). The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. Journal of Environmental Management. 216, 275-284. https://doi.org/10.1016/j.jenv man.2017. 11.086.

Mierzwa, J. C., & Hespanhol, I. (2005). Água na Indústria: Uso Racional e Reuso. SP. Ed. Oficina de Textos.

Mierzwa, J. C., Hespanhol, I., Silva, M. C. C., & Rodrigues, L. B. (2007). Águas pluviais: métodos de cálculo do reservatório e conceitos para um aproveitamento adequado. Rega. 4(1). 29-37.

Moriarty, P., & Honnery, D. (2019). Global renewable energy resources and use in 2050. Managing Global Warming. 221–235. 10.1016/b978-0-12-814104-5.00006-5.

Olender, A. (2014). Tabelas termodinâmicas.file:///C:/Users/quali/Downloads/PME3398%20-%20Tabelas%20Termodin%C3%A2micas.pdf.

Revel, G. M., & Arnesano, M. (2014). Perception of the thermal environment in sports facilities through subjective approach. Building and Environment. 77, 12–19. https://doi.org/10.1016/j.buildenv.2014.03.017.

Ricart, S., & Rico, A. M. (2019). Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor. Agricultural Water Management. 217, 426-439. 10.1016/j.agwat.2019.03.017.

Roshan, A., & Kumar, M. (2020). Water end-use estimation can support the urban water crisis management: A critical review. Journal of Environmental Management. 268. 110663. 10.1016/j.jenvman.2020.110663.

Shafiei, M., Moosavirad, S. H., Azimifard, A., & Biglari, S. (2020). Water consumption assessment in Asian chemical industries supply chains based on input–output analysis and one-way analysis of variance. Environmental Science and Pollution Research. 27. 12242–12255. https://doi.org/10.1007/s11356-020-07707-6.

Shoushtarian, F., & Negahban-Azar, M. (2020). Worldwide regulations and guidelines for agricultural water reuse: A Critical Review. Water. 12, 971. https://doi.org/10.3390/w12040971.

Shublaq, M., & Sleiti, A. K. (2020). Experimental analysis of water evaporation losses in cooling towers using filters. Applied Thermal Engineering. v. 175. July. 115418. https://doi.org/10.1016/j.applthermaleng.2020.115418.

Taghian D. S., & Ahmadikia, H. (2017). Retrofit of a wet cooling tower in order to reduce water and fan power consumption using a wet/dry approach. Applied Thermal Engineering. 125, 1002–1014. 10.1016/j.applthermaleng.2017.07.069.

Tomaz, P. (2011). Aproveitamento de água de chuva em áreas urbanas para fins não potáveis. 85-87678-23-X.

Tzanakakis, V. A., Paranychianakis, N. V., & Angelakis, A. N. (2020). Water supply and water scarcity. Water. 12(9), 2347. 10.3390/w12092347.

Viggiano, M. H. S. (2005). Sistemas de reuso das águas cinzas. Revista Téchne. São Paulo:SP. Pini, ano 13(98), 76-79.

Zeitoun, M., Mirumachi, N., Warner, J., Kirkegaard, M., & Cascão, A. (2019). Analysis for water conflict transformation. Water International.45(2), 1–20. 10.1080/02508060. 201.1607479.

Zhu, Q., Zhang, B., Chen, Q., He, C., Foo, D.C.Y., Ren, J., & Yu, H. (2020). Model reductions for multiscale stochastic optimization of cooling water system equipped with closed wet cooling towers. Chemical Engineering Science. 224. https://doi.org/10.1016/j.ces.2020.115773.

Wagner, T. V., Parsons, J. R., Rijnaarts, H. H. M., de Voogt, P., & Langenhoff, A. A. M. (2019). A review on the removal of conditioning chemicals from cooling tower water in constructed wetlands. Critical Reviews in Environmental Science and Technology. 48, 19-21. 10.1080/10643389.2018.1512289.

Wang, Y., Zhou, Y., Franz, K., Zhang, X., Ding, K. J., Jia, G., & Yuan,X. (2021). An agent-based framework for high-resolution modeling of domestic water use. Resources. Conservation and Recycling. 169, 105520. https://doi.org/10.1016/j. resconrec.2021.105520.

Wei, T. (2017). Application of reclaimed water reuse technology in office buildings. Revista de la Facultad de Ingeniería Universidad Central de Venezuela. 32(12). 129-136.

WJW Foundation. (2018). Water reuse practice guide. Charles Pankow Foundation. PO. Box 820631. Vancouver. WA:US.

WWAP. (2018). World water assessment programme (Nations Unies). The United Nations World Water Development Report 2018 (United Nations Educational. Scientific and Cultural Organization. New York, United States). www.unwater.org/publications/world-water-development-report-2018/

Publicado

16/08/2022

Cómo citar

MARQUES, G. I.; NIZZOLI FILHO, I.; SANTOS, A. R. Português (Brasil) Uso de agua de reúso como reemplazo de agua perdida en torres de enfriamiento. Research, Society and Development, [S. l.], v. 11, n. 11, p. e98111133367, 2022. DOI: 10.33448/rsd-v11i11.33367. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33367. Acesso em: 30 jun. 2024.

Número

Sección

Ingenierías