Biological activity of microalgae in dermatophytes: Review




Microalgae; Bioextracts; Dermatophytosis; Antifungal activity.


Microalgae are considered a rich source of biologically active metabolites with potential pharmacological use. In the pharmaceutical industry, microalgae extracts are found to present important biological activities, such as antifungal. Dermatophytosis are cutaneous mycoses caused by fungi called dermatophytes, microorganisms that have a special biotropism for keratinized tissues. The aim of this work was to conduct a literature review on the biological activity of microalgae extracts and compounds in dermatophyte fungi. This is a narrative review of the literature, carried out in the databases PubMed, LILACS, SciELO and Google Scholar. After search, eighteen articles published between 1960 and 2021, in English and French, were selected. Four groups of microalgae have already been explored for their antifungal activity: chlorophytes, diatoms, dinoflagellates and cyanobacteria, totaling 40 species of microalgae already tested in 19 species of dermatophytes. Diatoms and cyanobacteria have the largest number of tests performed against dermatophytes. The most tested species of dermatophytes are T. rubrum and T. menthagrophytes. The extracts of S. platensis, C. Braunii, T. nodosa and T. tenuis and the compounds isolated from the dinoflagellates Goniodoma sp., G. toxicus and Amphidinium sp. have the greatest inhibitory activity. The lack of standardization of tests and the antifungal activity of microalgae extracts already registered for dermatophytes encourages the carrying out of new studies to contemplate the great biodiversity and test the synergistic effect with commercial antifungals.


Al-Janabi, A. A. H. S., & Al-Khikani, F. H. O. (2020). Dermatophytoses: A short definition, pathogenesis, and treatment. International Journal of Health & Allied Sciences, 9 (3), 210-214.

Al-Rekabi, H. Y. (2011). Study the effect of some algae extracts against activity of some fungi. Journal of Thi-Qar University, 6 (4), 35-42.

Babu, M. R., Malathi, T., & Rao, B. D. (2017). Antifungal activity of selected cyanobacteria against fungal pathogens. International Journal of Pharmacy and Biological Sciences, 7 (4), 207-213.

Burstein, V. L., et al. (2020). Skin Immunity to Dermatophytes: From Experimental Infection Models to Human Disease. Frontiers in Immunology, 11.

Casarin, S. T., Porto, A. R., Gabatz, R. I. B., Bonow, C. A., Ribeiro, J. P., & Mota, M. S. (2020). Tipos de revisão de literatura: considerações das editoras do

Journal of Nursing and Health. Journal of Nursing and Health, 10 (5).

El-Sheekh, M. M., El-Shafay, S. M., & El-Ballat, E. M. (2015). Production and characterization of antifungal active substance from some marine and freshwater algae. International Journal of Environmental Science and Engineering, 6, 85-92.

El-Sheekh, M. M., El-Shafay, S. M., & El-Ballat, E. M. (2016). In vivo evaluation of antimicrobial effect of methanolic extract of Chlorella vulgaris on impetigo and some dermatophytes. Egyptian Journal of Botany, 56 (2), 423-437.

Falaise, C., et al. (2016). Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Marine drugs, 14 (9):159.

Gueho, E., Pesando, D., & Barelli, M. (1977). Proprietes antifongiques d’une diatomee Chaetoceros lauderi Ralfs C C. Mycopathologia, 60 (2), 105-107.

Horsley, T. (2019). Tips for improving the writing and reporting quality of systematic, scoping, and narrative reviews. Journal of Continuing Education in the Health Professions, 39 (1), 54-57.

Issa, A. A. (1999). Antibiotic production by the cyanobacteria Oscillatoria angustissima and Calothrix parietina. Environmental Toxicology and Pharmacology, 8, 33-37.

Jangi, M., Samaneh, E., & Hamideh, G. A. (2019). Effects of Iranian Spirulina platensis extract on Microsporum canis isolates. Iranian Journal of Infectious Diseases and Tropical Medicine, 85 (24), 10-17.

Khurana, A., Sardana, K., & Chowdhary, A. (2019). Antifungal resistance in dermatophytes: Recent trends and therapeutic implications. Fungal Genetics and Biology, 132, 1087-1845.

Kiran, B. D., & Mohan, S. V. (2021). Microalgal Cell Biofactory - Therapeutic, Nutraceutical and Functional Food Applications. Plants, 10 (5).

Kubota, T., et al. (2014). Amphidinins C−F, Amphidinolide Q Analogues from Marine Dinoflagellate Amphidinium sp. Organic Letters, 21 (16), 5624-5627.

Kubota, T., et al. (2015). Amphidinin G, a putative biosynthetic precursor of amphidinin A from marine dinoflagellate Amphidinium sp. Tetrahedron Letters, 56 (8), 990-993.

Kumar, V., Bhatnagar, A. K., & Srivastava, J. N. (2012). Comparative study of different strains of Spirulina platensis (Geiltler) against some human pathogens. Journal of Algal Biomass Utilization, 3 (3), 39-45.

Malathi, T., et al. (2015). Antimicrobial activity of Blue-Green Algae, Calothrix braunii (A. Br.) Bornet et Flahault. International Journal of Innovative Science, Engineering & Technology, 8 (2), 104-112.

Nagai, H., et al. (1993). Biological activities of novel polyether antifungals, Gambieric Acids A e B from a Marine dinoflagellate Gambierdiscus toxicus. The Journal of Antibiotics, 46 (3), 520-522.

Najdenski, H. M., et al. (2013). Antibacterial and antifungal activities of selected microalgae and cyanobacteria. International Journal of Food Science and Technology, 48, 1533–1540.

Nehul, J. N. (2020). Assesment of antifungal activity of a cyanobacterium Calothrix javanica de wilde. International Journal of Researches in Biosciences, Agriculture and Technology, 8 (2), 92-95.

Peres, N. T. A., et al. (2010). Dermatófitos: Interação patógeno-hospedeiro e resistência a antifúngicos. Anais brasileiros de dermatologia, 85 (5), 657-667.

Rizwan, M., et al. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renewable and Sustainable Energy Reviews, 92, 394-404.

Roman, C., Ellwanger, J., Becker, G. C., Silveira, A. D., Machado, C. L. B., & Manfroi, W. C. (2017). Metodologias ativas de ensino-aprendizagem no processo de ensino em saúde no Brasil: Uma revisão narrativa. Clinical and Biomedical Research, 37 (4), 349-357.

Sathasivam, R., et al. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26 (4), 709-722.

Shaieb, F. A., Issa, A. A., & Meragaa, A. (2014). Antimicrobial activity of crude extracts of cyanobacteria Nostoc commune and Spirulina platensis. Archives of Biomedical Sciences, 2 (2), 34-41.

Sharma, G. M., Michaels, L., & Burkholder, P. R. (1968). Goniodomin, a new antibiotic from a dinoflagellate. The Journal of Antibiotics, 21 (11), 659-664.

Sherief, M. A., et al. (2020). Modification of diatom using silver nanoparticle to improve antimicrobial activity. Materialstoday: Proceedings, 43 (6), 3369-3374.

Thillairajasekar, K., et al. (2009). Antimicrobial activity of Trichodesmium erythraeum (Ehr) (microalga) from South East coast of Tamil Nadu, India. International Journal of Integrative Biology, 5 (3), 167-170.

Vehapi, M., Yilmaz, A., & Ozçimen, D. (2018). Antifungal activities of Chlorella vulgaris and Chlorella minutissima microalgae cultivated in bold basal medium, wastewater and tree extract water against Aspergillus niger and Fusarium oxysporum. Romanian Biotechnological Letters.

Viso, A. C., Pesando, D., & Baby, C. (1987). Antibacterial and antifungal properties of some marine diatoms in culture. Botanica Marina, 30 (1), 41-45.

Wali, N. M., & Abdljbaar, A. S. (2020). Effect of ethanol and alkaloid extract of Spirulina platensis against dermatophyte fungi. Plant Archives, 20 (1), 2736-2743.

Walter, C. S., & Mahesh, R. (2000). Antibacterial and antifungal activities of some marine diatoms in culture. Indian Journal of Marine Sciences, 29, 238-242.



How to Cite

LAGE, V. M. G. B.; DEEGAN, K. R.; SANTOS, G. F.; BARBOSA, C. de J.; LIMA, S. T. da C. Biological activity of microalgae in dermatophytes: Review . Research, Society and Development, [S. l.], v. 11, n. 11, p. e126111133404, 2022. DOI: 10.33448/rsd-v11i11.33404. Disponível em: Acesso em: 28 sep. 2022.



Review Article