Actividad biológica de microalgas frente a dermatofitos: Revisión
DOI:
https://doi.org/10.33448/rsd-v11i11.33404Palabras clave:
Microalgas; Bioextractos; Dermatofitosis; Actividad antifúngica.Resumen
Las microalgas se presentan como uma fuente valiosa de metabolitos biológicamente activos, con potencial uso farmacológico. En la industria farmacéutica, los extractos de microalgas se han destacado por sus importantes actividades biológicas, incluso la actividad antifúngica. Las dermatofitosis son micosis cutáneas causadas por hongos denominados dermatofitos, microorganismo que presenta biotropismo para los tejidos queratinizados. El objetivo de este trabajo consiste em generar una revisión bibliográfica respecto la actividad biológica de extractos y compuestos de microalgas frente a hongos dermatofitos. Consiste en una revisión narrativa de la literatura, en que se ha utilizado los portales web y bases de datos de PubMed, LILACS, SciELO y Google Scholar. Tras la búsqueda, se han seleccionado 18 artículos publicados entre los años 1960 y 2021, en inglés y francés. Se han evaluado cuatro grupos de microalgas respecto a su actividad antifúngica: clorofitas, diatomeas, dinoflagelados y cianobacterias, totalizando 40 especies de microalgas probadas contra 19 especies de dermatofitos. Las diatomeas y las cianobacterias tienen el mayor número de pruebas realizadas contra los dermatofitos. Las especies de dermatofitos más estudiadas han sido T. rubrum y T. menthagrophytes. Los extractos obtenidos de S. platensis, C. braunii, T. nodosa y T. tenuis han mostrado una mayor actividad inhibitoria em los hongos estudiados, además de compuestos aislados de las especies de dinoflagelados Goniodoma sp., G. toxicus y Amphidinium sp.. La falta de estandarización de las pruebas y el hecho de que ya se hayan identificado las actividades antifúngicas de las especies de microalgas para el control de los dermatofitos, anima a realizar más estudios centrados en la biodiversidad y el efecto sinérgico con los fármacos comerciales.
Citas
Al-Janabi, A. A. H. S., & Al-Khikani, F. H. O. (2020). Dermatophytoses: A short definition, pathogenesis, and treatment. International Journal of Health & Allied Sciences, 9 (3), 210-214.
Al-Rekabi, H. Y. (2011). Study the effect of some algae extracts against activity of some fungi. Journal of Thi-Qar University, 6 (4), 35-42.
Babu, M. R., Malathi, T., & Rao, B. D. (2017). Antifungal activity of selected cyanobacteria against fungal pathogens. International Journal of Pharmacy and Biological Sciences, 7 (4), 207-213.
Burstein, V. L., et al. (2020). Skin Immunity to Dermatophytes: From Experimental Infection Models to Human Disease. Frontiers in Immunology, 11.
Casarin, S. T., Porto, A. R., Gabatz, R. I. B., Bonow, C. A., Ribeiro, J. P., & Mota, M. S. (2020). Tipos de revisão de literatura: considerações das editoras do
Journal of Nursing and Health. Journal of Nursing and Health, 10 (5).
El-Sheekh, M. M., El-Shafay, S. M., & El-Ballat, E. M. (2015). Production and characterization of antifungal active substance from some marine and freshwater algae. International Journal of Environmental Science and Engineering, 6, 85-92.
El-Sheekh, M. M., El-Shafay, S. M., & El-Ballat, E. M. (2016). In vivo evaluation of antimicrobial effect of methanolic extract of Chlorella vulgaris on impetigo and some dermatophytes. Egyptian Journal of Botany, 56 (2), 423-437.
Falaise, C., et al. (2016). Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Marine drugs, 14 (9):159.
Gueho, E., Pesando, D., & Barelli, M. (1977). Proprietes antifongiques d’une diatomee Chaetoceros lauderi Ralfs C C. Mycopathologia, 60 (2), 105-107.
Horsley, T. (2019). Tips for improving the writing and reporting quality of systematic, scoping, and narrative reviews. Journal of Continuing Education in the Health Professions, 39 (1), 54-57.
Issa, A. A. (1999). Antibiotic production by the cyanobacteria Oscillatoria angustissima and Calothrix parietina. Environmental Toxicology and Pharmacology, 8, 33-37.
Jangi, M., Samaneh, E., & Hamideh, G. A. (2019). Effects of Iranian Spirulina platensis extract on Microsporum canis isolates. Iranian Journal of Infectious Diseases and Tropical Medicine, 85 (24), 10-17.
Khurana, A., Sardana, K., & Chowdhary, A. (2019). Antifungal resistance in dermatophytes: Recent trends and therapeutic implications. Fungal Genetics and Biology, 132, 1087-1845.
Kiran, B. D., & Mohan, S. V. (2021). Microalgal Cell Biofactory - Therapeutic, Nutraceutical and Functional Food Applications. Plants, 10 (5).
Kubota, T., et al. (2014). Amphidinins C−F, Amphidinolide Q Analogues from Marine Dinoflagellate Amphidinium sp. Organic Letters, 21 (16), 5624-5627.
Kubota, T., et al. (2015). Amphidinin G, a putative biosynthetic precursor of amphidinin A from marine dinoflagellate Amphidinium sp. Tetrahedron Letters, 56 (8), 990-993.
Kumar, V., Bhatnagar, A. K., & Srivastava, J. N. (2012). Comparative study of different strains of Spirulina platensis (Geiltler) against some human pathogens. Journal of Algal Biomass Utilization, 3 (3), 39-45.
Malathi, T., et al. (2015). Antimicrobial activity of Blue-Green Algae, Calothrix braunii (A. Br.) Bornet et Flahault. International Journal of Innovative Science, Engineering & Technology, 8 (2), 104-112.
Nagai, H., et al. (1993). Biological activities of novel polyether antifungals, Gambieric Acids A e B from a Marine dinoflagellate Gambierdiscus toxicus. The Journal of Antibiotics, 46 (3), 520-522.
Najdenski, H. M., et al. (2013). Antibacterial and antifungal activities of selected microalgae and cyanobacteria. International Journal of Food Science and Technology, 48, 1533–1540.
Nehul, J. N. (2020). Assesment of antifungal activity of a cyanobacterium Calothrix javanica de wilde. International Journal of Researches in Biosciences, Agriculture and Technology, 8 (2), 92-95.
Peres, N. T. A., et al. (2010). Dermatófitos: Interação patógeno-hospedeiro e resistência a antifúngicos. Anais brasileiros de dermatologia, 85 (5), 657-667.
Rizwan, M., et al. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renewable and Sustainable Energy Reviews, 92, 394-404.
Roman, C., Ellwanger, J., Becker, G. C., Silveira, A. D., Machado, C. L. B., & Manfroi, W. C. (2017). Metodologias ativas de ensino-aprendizagem no processo de ensino em saúde no Brasil: Uma revisão narrativa. Clinical and Biomedical Research, 37 (4), 349-357.
Sathasivam, R., et al. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26 (4), 709-722.
Shaieb, F. A., Issa, A. A., & Meragaa, A. (2014). Antimicrobial activity of crude extracts of cyanobacteria Nostoc commune and Spirulina platensis. Archives of Biomedical Sciences, 2 (2), 34-41.
Sharma, G. M., Michaels, L., & Burkholder, P. R. (1968). Goniodomin, a new antibiotic from a dinoflagellate. The Journal of Antibiotics, 21 (11), 659-664.
Sherief, M. A., et al. (2020). Modification of diatom using silver nanoparticle to improve antimicrobial activity. Materialstoday: Proceedings, 43 (6), 3369-3374.
Thillairajasekar, K., et al. (2009). Antimicrobial activity of Trichodesmium erythraeum (Ehr) (microalga) from South East coast of Tamil Nadu, India. International Journal of Integrative Biology, 5 (3), 167-170.
Vehapi, M., Yilmaz, A., & Ozçimen, D. (2018). Antifungal activities of Chlorella vulgaris and Chlorella minutissima microalgae cultivated in bold basal medium, wastewater and tree extract water against Aspergillus niger and Fusarium oxysporum. Romanian Biotechnological Letters.
Viso, A. C., Pesando, D., & Baby, C. (1987). Antibacterial and antifungal properties of some marine diatoms in culture. Botanica Marina, 30 (1), 41-45.
Wali, N. M., & Abdljbaar, A. S. (2020). Effect of ethanol and alkaloid extract of Spirulina platensis against dermatophyte fungi. Plant Archives, 20 (1), 2736-2743.
Walter, C. S., & Mahesh, R. (2000). Antibacterial and antifungal activities of some marine diatoms in culture. Indian Journal of Marine Sciences, 29, 238-242.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Vivian Marina Gomes Barbosa Lage; Kathleen Ramos Deegan; Gabriela Fontes Santos; Cristiane de Jesus Barbosa; Suzana Telles da Cunha Lima

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.