The impact of COVID-19 vaccine rejection on hospital admission and variants spread worldwide: implications for healthcare policy

Authors

DOI:

https://doi.org/10.33448/rsd-v11i11.33435

Keywords:

Coronavirus; Vaccine; ARIMA model; Rejection; Hospitalization.

Abstract

Objective. To predict when different countries will reach 70% of fully vaccinated population against COVID-19 and to assess the effects of vaccine rejection on the number of patients admitted to ICU and on rates of omicron and other SARS-Cov-2 variants infections. Methods.  Data on the ‘number of patients with COVID-19 admitted to ICU’, ‘share of people who received at least one dose of COVID-19 vaccine’ and ‘percentage of unvaccinated population (USA, Brazil, Europe, Africa, Asia) that refuses to receive the first dose of COVID-19 vaccine’ were collected from a public database from December 2020-January 2022. Time series-based models were used to predict when countries will reach 70% rate of fully vaccinated population. Results. ARIMA model was robust for predicting COVID-19 vaccination in different countries. In the USA, Brazil, the European Union and Asia 70% of the population was vaccinated against COVID-19 between September 2021-April 2022. In the Africa, the forecast is only in the beginning of 2024. The percentage of the unvaccinated population had a significant effect on the increase in ICU admissions and on the increase of omicron, alpha, delta, and gamma variant cases. Conclusion.  Although the ARIMA model showed the best performance to predict vaccination patterns, its accuracy may decrease over time especially due the vaccination rejection rate. In this scenario, strategies to improve vaccination should be implemented.

References

Aguado, M. T., Barratt, J., Beard, J. R., Blomberg, B. B., Chen, W. H., Hickling, J., ... & Ortiz, J. R. (2018). Report on WHO meeting on immunization in older adults: Geneva, Switzerland, 22–23 March 2017. Vaccine, 36(7), 921-931.

Arnold, T. W. (2010). Uninformative parameters and model selection using Akaike's Information Criterion. The Journal of Wildlife Management, 74(6), 1175-1178.

Aw, J., Seng, J. J. B., Seah, S. S. Y., & Low, L. L. (2021). COVID-19 vaccine hesitancy—A scoping review of literature in high-income countries. Vaccines, 9(8), 900.

Bertozzi, A. L., Franco, E., Mohler, G., Short, M. B., & Sledge, D. (2020). The challenges of modeling and forecasting the spread of COVID-19. Proceedings of the National Academy of Sciences, 117(29), 16732-16738.

Bhatta, M., Nandi, S., Dutta, S., & Saha, M. K. (2022). Coronavirus (SARS-CoV-2): a systematic review for potential vaccines. Human vaccines & immunotherapeutics, 18(1), 1865774.

Billah, B., King, M. L., Snyder, R. D., & Koehler, A. B. (2006). Exponential smoothing model selection for forecasting. International journal of forecasting, 22(2), 239-247.

Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3), 345-370.

Brown, R. G., & Meyer, R. F. (1961). The fundamental theorem of exponential smoothing. Operations Research, 9(5), 673-685.

Burki, T. (2022). COVID-19 vaccine mandates in Europe. The Lancet Infectious Diseases, 22(1), 27-28.

Ceylan, Z. (2020). Estimation of COVID-19 prevalence in Italy, Spain, and France. Science of The Total Environment, 729, 138817.

Dong, Y., Dai, T., Wei, Y., Zhang, L., Zheng, M., & Zhou, F. (2020). A systematic review of SARS-CoV-2 vaccine candidates. Signal transduction and targeted therapy, 5(1), 1-14.

Faruk, D. Ö. (2010). A hybrid neural network and ARIMA model for water quality time series prediction. Engineering applications of artificial intelligence, 23(4), 586-594.

Fattah, J., Ezzine, L., Aman, Z., El Moussami, H., & Lachhab, A. (2018). Forecasting of demand using ARIMA model. International Journal of Engineering Business Management, 10, 1847979018808673.

Forni, G., & Mantovani, A. (2021). COVID-19 vaccines: where we stand and challenges ahead. Cell Death & Differentiation, 28(2), 626-639.

Gardner Jr, E. S. (1985). Exponential smoothing: The state of the art. Journal of forecasting, 4(1), 1-28.

Graeber, D., Schmidt-Petri, C., & Schröder, C. (2021). Attitudes on voluntary and mandatory vaccination against COVID-19: Evidence from Germany. PloS one, 16(5), e0248372.

Hansun, S. (2016). A new approach of brown’s double exponential smoothing method in time series analysis. Balkan Journal of Electrical and Computer Engineering, 4(2), 75-78.

Ho, S. L., & Xie, M. (1998). The use of ARIMA models for reliability forecasting and analysis. Computers & industrial engineering, 35(1-2), 213-216.

Hodgson, S. H., Mansatta, K., Mallett, G., Harris, V., Emary, K. R., & Pollard, A. J. (2021). What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. The lancet infectious diseases, 21(2), e26-e35.

Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International journal of forecasting, 20(1), 5-10.

Kaur, S. P., & Gupta, V. (2020). COVID-19 Vaccine: A comprehensive status report. Virus research, 288, 198114.

Khubchandani, J., Sharma, S., Price, J. H., Wiblishauser, M. J., Sharma, M., & Webb, F. J. (2021). COVID-19 vaccination hesitancy in the United States: a rapid national assessment. Journal of community health, 46(2), 270-277.

Konarasinghe, K. M. U. B. (2020). Modeling COVID-19 epidemic of USA, UK and Russia. Journal of New Frontiers in Healthcare and Biological Sciences, 1(1), 1-14.

Leask, J., Seale, H., Williams, J. H., Kaufman, J., Wiley, K., Mahimbo, A., ... & Attwell, K. (2021). Policy considerations for mandatory COVID‐19 vaccination from the Collaboration on Social Science and Immunisation. Medical Journal of Australia, 215(11), 499-503.

Loembé, M. M., & Nkengasong, J. N. (2021). COVID-19 vaccine access in Africa: Global distribution, vaccine platforms, and challenges ahead. Immunity, 54(7), 1353-1362.

Mattos, A. M. D., Costa, I. Z. K., Neto, M., Rafael, R. D. M. R., Carvalho, E. C., & Porto, F. (2021). Fake News in times of COVID-19 and its legal treatment in Brazilian law. Escola Anna Nery, 25.

Mendelson, M., Venter, F., Moshabela, M., Gray, G., Blumberg, L., de Oliveira, T., & Madhi, S. A. (2021). The political theatre of the UK's travel ban on South Africa. The Lancet, 398(10318), 2211-2213.

Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to time series analysis and forecasting. John Wiley & Sons.

Ortega, F., & Orsini, M. (2020). Governing COVID-19 without government in Brazil: Ignorance, neoliberal authoritarianism, and the collapse of public health leadership. Global public health, 15(9), 1257-1277.

Pan, W. (2001). Akaike's information criterion in generalized estimating equations. Biometrics, 57(1), 120-125.

Phillips, G. B. (1978). Sex hormones, risk factors and cardiovascular disease. The American journal of medicine, 65(1), 7-11.

Ritchie, H., Mathieu, E., Rodés-Guirao, L., Appel, C., Giattino, C., Ortiz-Ospina, E., ... & Roser, M. (2020). Coronavirus pandemic (COVID-19). Our world in data.

Ritchie, H., Mathieu, E., Rodés-Guirao, L., Appel, C., Giattino, C., Ortiz-Ospina, E., ... & Roser, M. (2020). Coronavirus pandemic (COVID-19). Our world in data.

Rubin, R. (2021). COVID-19 vaccines vs variants—determining how much immunity is enough. Jama, 325(13), 1241-1243.

Sahai, A. K., Rath, N., Sood, V., & Singh, M. P. (2020). ARIMA modelling & forecasting of COVID-19 in top five affected countries. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(5), 1419-1427.

Sampford, M. R. (1978). Sampling Techniques.

Singh, S., Parmar, K. S., Kumar, J., & Makkhan, S. J. S. (2020). Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19. Chaos, Solitons & Fractals, 135, 109866.

Soares, P., Rocha, J. V., Moniz, M., Gama, A., Laires, P. A., Pedro, A. R., ... & Nunes, C. (2021). Factors associated with COVID-19 vaccine hesitancy. Vaccines, 9(3), 300.

Spector, P. E., Fox, S., Penney, L. M., Bruursema, K., Goh, A., & Kessler, S. (2006). The dimensionality of counterproductivity: Are all counterproductive behaviors created equal?. Journal of vocational behavior, 68(3), 446-460.

Taylor, J. W. (2003). Exponential smoothing with a damped multiplicative trend. International journal of Forecasting, 19(4), 715-725.

Uddin, M. N., & Roni, M. A. (2021). Challenges of storage and stability of mRNA-based COVID-19 vaccines. Vaccines, 9(9), 1033.

Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., ... & Peng, Z. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama, 323(11), 1061-1069.

Wang, M., Wu, Q., Xu, W., Qiao, B., Wang, J., Zheng, H., ... & Li, Y. (2020). Clinical diagnosis of 8274 samples with 2019-novel coronavirus in Wuhan. MedRxiv.

WHO, Immunisation coverage. July 15, 2020. https://www.who.int/ news-room/fact-sheets/detail/immunization-coverage, (2021).

Yonar, H., Yonar, A., Tekindal, M. A., & Tekindal, M. (2020). Modeling and Forecasting for the number of cases of the COVID-19 pandemic with the Curve Estimation Models, the Box-Jenkins and Exponential Smoothing Methods. EJMO, 4(2), 160-165.

Zhang, J. J., Dong, X., Cao, Y. Y., Yuan, Y. D., Yang, Y. B., Yan, Y. Q., ... & Gao, Y. D. (2020). Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy, 75(7), 1730-1741.

Downloads

Published

19/08/2022

How to Cite

COBRE, A. de F.; STREMEL, D. P.; BÖGER, B.; FACHI, M. M.; BORBA , H. H. L.; TONIN, F. . S. .; PONTAROLO, R. The impact of COVID-19 vaccine rejection on hospital admission and variants spread worldwide: implications for healthcare policy. Research, Society and Development, [S. l.], v. 11, n. 11, p. e189111133435, 2022. DOI: 10.33448/rsd-v11i11.33435. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33435. Acesso em: 22 nov. 2024.

Issue

Section

Health Sciences