El impacto del rechazo a la vacuna COVID-19 en el ingreso hospitalario y la propagación de variantes en todo el mundo: implicaciones para la política de salud

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i11.33435

Palabras clave:

Coronavirus; Vacuna; Modelo ARIMA; Rechazo; Hospitalización.

Resumen

Objetivo. Predecir cuándo los diferentes países alcanzarán el 70 % de la población completamente vacunada contra el COVID-19 y evaluar los efectos del rechazo de la vacuna en el número de pacientes ingresados ​​en la UCI y en las tasas de infecciones por omicron y otras variantes del SARS-Cov-2. Métodos. Datos sobre el 'número de pacientes con COVID-19 ingresados ​​en UCI', 'proporción de personas que recibieron al menos una dosis de la vacuna COVID-19' y 'porcentaje de población no vacunada (EE. UU., Brasil, Europa, África, Asia) que se niega a recibir la primera dosis de la vacuna COVID-19' se recopilaron de una base de datos pública desde diciembre de 2020 hasta enero de 2022. Se utilizaron modelos basados ​​en series temporales para predecir cuándo alcanzarán los países una tasa del 70 % de población completamente vacunada. Resultados. El modelo ARIMA fue sólido para predecir la vacunación contra la COVID-19 en diferentes países. En EE. UU., Brasil, la Unión Europea y Asia, el 70% de la población se vacunó contra el COVID-19 entre septiembre de 2021 y abril de 2022. En África, la previsión es solo a principios de 2024. El porcentaje de la población no vacunada había un efecto significativo en el aumento de las admisiones en la UCI y en el aumento de los casos variantes omicron, alfa, delta y gamma. Conclusión. Aunque el modelo ARIMA mostró el mejor rendimiento para predecir los patrones de vacunación, su precisión puede disminuir con el tiempo, especialmente debido a la tasa de rechazo a la vacunación. En este escenario, se deben implementar estrategias para mejorar la vacunación.

Citas

Aguado, M. T., Barratt, J., Beard, J. R., Blomberg, B. B., Chen, W. H., Hickling, J., ... & Ortiz, J. R. (2018). Report on WHO meeting on immunization in older adults: Geneva, Switzerland, 22–23 March 2017. Vaccine, 36(7), 921-931.

Arnold, T. W. (2010). Uninformative parameters and model selection using Akaike's Information Criterion. The Journal of Wildlife Management, 74(6), 1175-1178.

Aw, J., Seng, J. J. B., Seah, S. S. Y., & Low, L. L. (2021). COVID-19 vaccine hesitancy—A scoping review of literature in high-income countries. Vaccines, 9(8), 900.

Bertozzi, A. L., Franco, E., Mohler, G., Short, M. B., & Sledge, D. (2020). The challenges of modeling and forecasting the spread of COVID-19. Proceedings of the National Academy of Sciences, 117(29), 16732-16738.

Bhatta, M., Nandi, S., Dutta, S., & Saha, M. K. (2022). Coronavirus (SARS-CoV-2): a systematic review for potential vaccines. Human vaccines & immunotherapeutics, 18(1), 1865774.

Billah, B., King, M. L., Snyder, R. D., & Koehler, A. B. (2006). Exponential smoothing model selection for forecasting. International journal of forecasting, 22(2), 239-247.

Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3), 345-370.

Brown, R. G., & Meyer, R. F. (1961). The fundamental theorem of exponential smoothing. Operations Research, 9(5), 673-685.

Burki, T. (2022). COVID-19 vaccine mandates in Europe. The Lancet Infectious Diseases, 22(1), 27-28.

Ceylan, Z. (2020). Estimation of COVID-19 prevalence in Italy, Spain, and France. Science of The Total Environment, 729, 138817.

Dong, Y., Dai, T., Wei, Y., Zhang, L., Zheng, M., & Zhou, F. (2020). A systematic review of SARS-CoV-2 vaccine candidates. Signal transduction and targeted therapy, 5(1), 1-14.

Faruk, D. Ö. (2010). A hybrid neural network and ARIMA model for water quality time series prediction. Engineering applications of artificial intelligence, 23(4), 586-594.

Fattah, J., Ezzine, L., Aman, Z., El Moussami, H., & Lachhab, A. (2018). Forecasting of demand using ARIMA model. International Journal of Engineering Business Management, 10, 1847979018808673.

Forni, G., & Mantovani, A. (2021). COVID-19 vaccines: where we stand and challenges ahead. Cell Death & Differentiation, 28(2), 626-639.

Gardner Jr, E. S. (1985). Exponential smoothing: The state of the art. Journal of forecasting, 4(1), 1-28.

Graeber, D., Schmidt-Petri, C., & Schröder, C. (2021). Attitudes on voluntary and mandatory vaccination against COVID-19: Evidence from Germany. PloS one, 16(5), e0248372.

Hansun, S. (2016). A new approach of brown’s double exponential smoothing method in time series analysis. Balkan Journal of Electrical and Computer Engineering, 4(2), 75-78.

Ho, S. L., & Xie, M. (1998). The use of ARIMA models for reliability forecasting and analysis. Computers & industrial engineering, 35(1-2), 213-216.

Hodgson, S. H., Mansatta, K., Mallett, G., Harris, V., Emary, K. R., & Pollard, A. J. (2021). What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. The lancet infectious diseases, 21(2), e26-e35.

Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International journal of forecasting, 20(1), 5-10.

Kaur, S. P., & Gupta, V. (2020). COVID-19 Vaccine: A comprehensive status report. Virus research, 288, 198114.

Khubchandani, J., Sharma, S., Price, J. H., Wiblishauser, M. J., Sharma, M., & Webb, F. J. (2021). COVID-19 vaccination hesitancy in the United States: a rapid national assessment. Journal of community health, 46(2), 270-277.

Konarasinghe, K. M. U. B. (2020). Modeling COVID-19 epidemic of USA, UK and Russia. Journal of New Frontiers in Healthcare and Biological Sciences, 1(1), 1-14.

Leask, J., Seale, H., Williams, J. H., Kaufman, J., Wiley, K., Mahimbo, A., ... & Attwell, K. (2021). Policy considerations for mandatory COVID‐19 vaccination from the Collaboration on Social Science and Immunisation. Medical Journal of Australia, 215(11), 499-503.

Loembé, M. M., & Nkengasong, J. N. (2021). COVID-19 vaccine access in Africa: Global distribution, vaccine platforms, and challenges ahead. Immunity, 54(7), 1353-1362.

Mattos, A. M. D., Costa, I. Z. K., Neto, M., Rafael, R. D. M. R., Carvalho, E. C., & Porto, F. (2021). Fake News in times of COVID-19 and its legal treatment in Brazilian law. Escola Anna Nery, 25.

Mendelson, M., Venter, F., Moshabela, M., Gray, G., Blumberg, L., de Oliveira, T., & Madhi, S. A. (2021). The political theatre of the UK's travel ban on South Africa. The Lancet, 398(10318), 2211-2213.

Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to time series analysis and forecasting. John Wiley & Sons.

Ortega, F., & Orsini, M. (2020). Governing COVID-19 without government in Brazil: Ignorance, neoliberal authoritarianism, and the collapse of public health leadership. Global public health, 15(9), 1257-1277.

Pan, W. (2001). Akaike's information criterion in generalized estimating equations. Biometrics, 57(1), 120-125.

Phillips, G. B. (1978). Sex hormones, risk factors and cardiovascular disease. The American journal of medicine, 65(1), 7-11.

Ritchie, H., Mathieu, E., Rodés-Guirao, L., Appel, C., Giattino, C., Ortiz-Ospina, E., ... & Roser, M. (2020). Coronavirus pandemic (COVID-19). Our world in data.

Ritchie, H., Mathieu, E., Rodés-Guirao, L., Appel, C., Giattino, C., Ortiz-Ospina, E., ... & Roser, M. (2020). Coronavirus pandemic (COVID-19). Our world in data.

Rubin, R. (2021). COVID-19 vaccines vs variants—determining how much immunity is enough. Jama, 325(13), 1241-1243.

Sahai, A. K., Rath, N., Sood, V., & Singh, M. P. (2020). ARIMA modelling & forecasting of COVID-19 in top five affected countries. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(5), 1419-1427.

Sampford, M. R. (1978). Sampling Techniques.

Singh, S., Parmar, K. S., Kumar, J., & Makkhan, S. J. S. (2020). Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19. Chaos, Solitons & Fractals, 135, 109866.

Soares, P., Rocha, J. V., Moniz, M., Gama, A., Laires, P. A., Pedro, A. R., ... & Nunes, C. (2021). Factors associated with COVID-19 vaccine hesitancy. Vaccines, 9(3), 300.

Spector, P. E., Fox, S., Penney, L. M., Bruursema, K., Goh, A., & Kessler, S. (2006). The dimensionality of counterproductivity: Are all counterproductive behaviors created equal?. Journal of vocational behavior, 68(3), 446-460.

Taylor, J. W. (2003). Exponential smoothing with a damped multiplicative trend. International journal of Forecasting, 19(4), 715-725.

Uddin, M. N., & Roni, M. A. (2021). Challenges of storage and stability of mRNA-based COVID-19 vaccines. Vaccines, 9(9), 1033.

Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., ... & Peng, Z. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama, 323(11), 1061-1069.

Wang, M., Wu, Q., Xu, W., Qiao, B., Wang, J., Zheng, H., ... & Li, Y. (2020). Clinical diagnosis of 8274 samples with 2019-novel coronavirus in Wuhan. MedRxiv.

WHO, Immunisation coverage. July 15, 2020. https://www.who.int/ news-room/fact-sheets/detail/immunization-coverage, (2021).

Yonar, H., Yonar, A., Tekindal, M. A., & Tekindal, M. (2020). Modeling and Forecasting for the number of cases of the COVID-19 pandemic with the Curve Estimation Models, the Box-Jenkins and Exponential Smoothing Methods. EJMO, 4(2), 160-165.

Zhang, J. J., Dong, X., Cao, Y. Y., Yuan, Y. D., Yang, Y. B., Yan, Y. Q., ... & Gao, Y. D. (2020). Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy, 75(7), 1730-1741.

Descargas

Publicado

19/08/2022

Cómo citar

COBRE, A. de F.; STREMEL, D. P.; BÖGER, B.; FACHI, M. M.; BORBA , H. H. L.; TONIN, F. . S. .; PONTAROLO, R. El impacto del rechazo a la vacuna COVID-19 en el ingreso hospitalario y la propagación de variantes en todo el mundo: implicaciones para la política de salud. Research, Society and Development, [S. l.], v. 11, n. 11, p. e189111133435, 2022. DOI: 10.33448/rsd-v11i11.33435. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33435. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias de la salud