Simulation and optimization of CO2 absorption with water in biogas treatment

Authors

DOI:

https://doi.org/10.33448/rsd-v11i11.33667

Keywords:

Physical Absorption; Water; AspenPlus; Biogas; Simulation.

Abstract

The present work aims to simulate a CO2 absorber using, from HPWS technology, water as solvent and bed-packed with Pall rings and analyze the influence of operational variables in the biogas refining plant. In the study, several values are tested, in the ASPEN PLUS® V8.8 software, for the flow of solvent fed, pressure, and temperature of the tower, to establish optimal values for these variables. The results obtained proved to be more effective for the purity of the treated biogas and the CO2 removal and presented a lower operating cost.

References

Ahmed, S. F., Mofijur, M., Tarannum, K., Chowdhury, A. T., Rafa, N., Nuzhat, S., Kumar, P.S., Vo, D.V.N., Lichtfouse, E., & Mahlia, T. M. I. (2021). Biogas upgrading, economy and utilization: a review. Environmental Chemistry Letters, 19(6), 4137-4164. DOI: https://doi.org/10.1007/s10311-021-01292-x.

Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology advances, 36(2), 452-466. DOI: https://doi.org/10.1016/j.biotechadv.2018.01.011.

Angelidaki, I., Xie, L., Luo, G., Zhang, Y., Oechsner, H., Lemmer, A., Munoz, R., & Kougias, P. G. (2019). Biogas upgrading: current and emerging technologies. Biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels, 817-843. DOI: https://doi.org/10.1016/B978-0-12-816856-1.00033-6.

Aspen Plus® (1999). User guide Aspen Plus steady state simulation, v.10. Aspen Technology Inc.

Bashar, M. A. (2018). Biogas quality improvement using water wash and phosphorus recovery as struvite in Jones Island WWTP (Doctoral dissertation, The University of Wisconsin-Milwaukee).

Caldas, J. N. & Lacerda, A. I., (2003). Internos de torres: pratos & recheios. Ed. UERJ, 466 .

Chew, K. R., Leong, H. Y., Khoo, K. S., Vo, D. V. N., Anjum, H., Chang, C. K., & Show, P. L. (2021). Effects of anaerobic digestion of food waste on biogas production and environmental impacts: a review. Environmental Chemistry Letters, 19(4), 2921-2939. DOI: https://doi.org/10.1007/s10311-021-01220-z.

Cozma, P., Ghinea, C., Mămăligă, I., Wukovits, W., Friedl, A., & Gavrilescu, M. (2013). Environmental impact assessment of high pressure water scrubbing biogas upgrading technology. CLEAN–Soil, Air, Water, 41(9), 917-927. DOI: https://doi.org/10.1002/clen.201200303.

Cozma, P., Wukovits, W., Friedl, A., & Gavrilescu, M. (2012). Biogas upgrading using water scrubbing technology. Chem Eng Tome.

Cozma, P., Wukovits, W., Mămăligă, I., Friedl, A., & Gavrilescu, M. (2013). Analysis and modeling of the solubility of biogas components in water for physical absorption processes. Environmental engineering & management journal.

Cozma, P., Wukovits, W., Mămăligă, I., Friedl, A., & Gavrilescu, M. (2014). Modeling and simulation of high pressure water scrubbing technology applied for biogas upgrading. Clean Technologies and Environmental Policy, 17(2), 373-391. DOI: https://doi.org/10.1007/s10098-014-0787-7.

Dorf, R. C. (2004). The Engineering Handbook, Second Edition. CRC Press, EUA.

Faramawy, S., Zaki, T., & Sakr, A. E. (2016). Natural gas origin, composition, and processing: A review. Journal of Natural Gas Science and Engineering, 34, 34-54.. DOI: https://doi.org/10.1016/j.jngse.2016.06.030.

Gasparovic, C. L. M. (2014). Simulação e controle de uma coluna de absorção para purificação de biogás: avaliação da viabilidade técnica e econômica do processo (Bachelor's thesis, Universidade Tecnológica Federal do Paraná). http://repositorio.utfpr.edu.br/jspui/handle/1/12529.

Hoyer, K., Hulteberg, C., Svensson, M., Jernberg, J., & Nörregård, Ö. (2016). Biogas upgrading-technical review. https://lup.lub.lu.se/record/9e1c64bd-efe6-4cc4-88d5-c79eab06fcc5.

IPCC (2005). IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/03/srccs_wholereport-1.pdf.

Kapoor, R., Subbarao, P. M. V., Vijay, V. K., Shah, G., Sahota, S., Singh, D., & Verma, M. (2017). Factors affecting methane loss from a water scrubbing based biogas upgrading system. Applied Energy, 208, 1379-1388. DOI: https://doi.org/10.1016/j.apenergy.2017.09.017.

Kim, J. H., Lee, J. H., Lee, I. Y., Jang, K. R., & Shim, J. G. (2011). Performance evaluation of newly developed absorbents for CO2 capture. Energy Procedia, 4, 81-84. DOI: https://doi.org/10.1016/j.egypro.2011.01.026.

Kister, H. Z. (1992). Distillation design, First Edition. McGraw-Hill Book Company.

Lima, J. C. F., Costa, J. C. da, Mattedi, S., & Góis, L. M. N. de . (2021). Flooding and loading in packed columns absorption. Research, Society and Development, 10(3), e29410312369. DOI: https://doi.org/10.33448/rsd-v10i3.12369.

Lizarazu, M. S. D. (2016). Otimização multiobjetivo aplicada à eficiência energética de torres de resfriamento. http://www.bdtd.uerj.br/handle/1/11839.

Magalhães, E. A., de Souza, S. N. M., de Lima Afonso, A. D., & Ricieri, R. P. (2004). Confecção e avaliação de um sistema de remoção do CO2 contido no biogás. Acta Scientiarum. Technology, 26(1), 11-19. DOI: https://doi.org/10.4025/actascitechnol.v26i1.1537.

Martins, P. R. L. (2011). Avaliação do processo de absorção de CO2 com aminas utilizando o HYSYS® (Doctoral dissertation, Dissertação (Mestrado)–Universidade Federal do Rio de Janeiro). http://epqb.eq.ufrj.br/download/avaliacao-do-processo-de-absorcao-de-co2-com-aminas-utilizando-hysys.pdf.

Mello, L. C. D. (2013). Estudo do processo de absorção de CO2 em soluções de aminas empregando-se coluna recheada (Doctoral dissertation, Universidade de São Paulo). DOI: https://doi.org/10.11606/T.3.2013.tde-18082014-114022.

Mumford, K. A., Smith, K. H., Anderson, C. J., Shen, S., Tao, W., Suryaputradinata, Y. A., Qader, A., Hooper, B., Innocenzi, R.A., Kentish, S.E., & Stevens, G. W. (2012). Post-combustion capture of CO2: results from the solvent absorption capture plant at Hazelwood power station using potassium carbonate solvent. Energy & fuels, 26(1), 138-146. DOI: https://doi.org/10.1021/ef201192n.

Nanxiang Chemical Packing (2022). Plastic Pall Ring. http://www.nxpacking.com/plastic-random-packing/plastic-pall-ring.html.

Nock, W. J., Walker, M., Kapoor, R., & Heaven, S. (2014). Modeling the water scrubbing process and energy requirements for CO2 capture to upgrade biogas to biomethane. Industrial & Engineering Chemistry Research, 53(32), 12783-12792. DOI: https://doi.org/10.1021/ie501280p.

Norton (1977). Design Information for Packed Towers. Bulletin DC-11, Akron.

Patuzzo, G. S. (2019). Otimização e análise do processo de absorção por water scrubbing no refino de biogás.

Pereira, A. S., Shitsuka D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM. https://www.ufsm.br/app/uploads/sit

es/358/2019/02/Metodologia-da-Pesquisa-Cientifica_final.pdf.

Rasi, S., Läntelä, J., & Rintala, J. (2014). Upgrading landfill gas using a high pressure water absorption process. Fuel, 115, 539-543. DOI: https://doi.org/10.1016/j.fuel.2013.07.082.

Rodrigues, M. I., Iemma, A. F. (2014). Planejamento Experimental e otimização de processos, 3ª edição. Campinas, SP.

Seman, N. A., & Harun, N. (2019, November). Simulation of pressurized water scrubbing process for biogas purification using Aspen Plus. In IOP Conference Series: Materials Science and Engineering (Vol. 702, No. 1, p. 012040). IOP Publishing. DOI: https://doi.org/10.1088/1757-899X/702/1/012040.

Shibata, F. S. (2017). Absorção de gás carbônico para beneficiamento de biogás utilizando carbonatos em coluna recheada (Doctoral dissertation, Universidade de São Paulo). DOI: https://doi.org/10.11606/D.3.2017.tde-24102017-112603.

Struk, M., Kushkevych, I., & Vítězová, M. (2020). Biogas upgrading methods: recent advancements and emerging technologies. Reviews in Environmental Science and Bio/Technology, 19(3), 651-671. DOI: https://doi.org/10.1007/s11157-020-09539-9.

Vilela, F.H. (2014). Influência do posicionamento do distribuidor de líquido na eficiência de absorção de dióxido de carbono em torre de absorção (Master dissertation, Universidade Santa Cecília, São Paulo) . https://unisanta.br/arquivos/mestrado%5Cmecanica%5Cdissertacoes%5Cdissertacao_fernando_henrique_vilela.pdf.

Volkers, B. D. (2016). Carbon dioxide for calcite scale control in cooling water systems (Doctoral dissertation, Faculty of Science and Engineering). https://fse.studenttheses.ub.rug.nl/15531/2/Master_Thesis_Beerd-Dries_Volk_1.pdf.

Wall, D. M., Dumont, M., & Murphy, J. D. (2018). Green gas: Facilitating a future green gas grid through the production of renewable gas. IEA Bioenergy. https://www.ieabioenergy.com/wp-content/uploads/2018/04/green_gas_web_end.pdf.

Xu, Y., Huang, Y., Wu, B., Zhang, X., & Zhang, S. (2015). Biogas upgrading technologies: Energetic analysis and environmental impact assessment. Chinese Journal of Chemical Engineering, 23(1), 247-254. DOI: https://doi.org/10.1016/j.cjche.2014.09.048.

Published

24/08/2022

How to Cite

WATANABE NETO, M.; GÓIS, L. M. N. de. Simulation and optimization of CO2 absorption with water in biogas treatment. Research, Society and Development, [S. l.], v. 11, n. 11, p. e348111133667, 2022. DOI: 10.33448/rsd-v11i11.33667. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33667. Acesso em: 28 sep. 2022.

Issue

Section

Engineerings