Simulación y optimización de la absorción de CO2 con agua en el tratamiento del biogás

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i11.33667

Palabras clave:

Absorción Física; Agua; AspenPlus; Biogás; Simulación.

Resumen

El presente trabajo tiene como objetivo simular un absorbedor de CO2 utilizando, a partir de la tecnología HPWS, agua como solvente y anillos de Pall como relleno, y analizar la influencia de las variables operativas en la planta de refino de biogás. En el estudio se ensayan varios valores, en el software ASPEN PLUS® V8.8, para el flujo de solvente alimentado, presión y temperatura de la torre, con el fin de establecer valores óptimos para estas variables. Los resultados obtenidos demostraron ser más efectivos para la pureza del biogás tratado y la remoción de CO2, y presentaron un menor costo operativo.

Citas

Ahmed, S. F., Mofijur, M., Tarannum, K., Chowdhury, A. T., Rafa, N., Nuzhat, S., Kumar, P.S., Vo, D.V.N., Lichtfouse, E., & Mahlia, T. M. I. (2021). Biogas upgrading, economy and utilization: a review. Environmental Chemistry Letters, 19(6), 4137-4164. DOI: https://doi.org/10.1007/s10311-021-01292-x.

Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology advances, 36(2), 452-466. DOI: https://doi.org/10.1016/j.biotechadv.2018.01.011.

Angelidaki, I., Xie, L., Luo, G., Zhang, Y., Oechsner, H., Lemmer, A., Munoz, R., & Kougias, P. G. (2019). Biogas upgrading: current and emerging technologies. Biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels, 817-843. DOI: https://doi.org/10.1016/B978-0-12-816856-1.00033-6.

Aspen Plus® (1999). User guide Aspen Plus steady state simulation, v.10. Aspen Technology Inc.

Bashar, M. A. (2018). Biogas quality improvement using water wash and phosphorus recovery as struvite in Jones Island WWTP (Doctoral dissertation, The University of Wisconsin-Milwaukee).

Caldas, J. N. & Lacerda, A. I., (2003). Internos de torres: pratos & recheios. Ed. UERJ, 466 .

Chew, K. R., Leong, H. Y., Khoo, K. S., Vo, D. V. N., Anjum, H., Chang, C. K., & Show, P. L. (2021). Effects of anaerobic digestion of food waste on biogas production and environmental impacts: a review. Environmental Chemistry Letters, 19(4), 2921-2939. DOI: https://doi.org/10.1007/s10311-021-01220-z.

Cozma, P., Ghinea, C., Mămăligă, I., Wukovits, W., Friedl, A., & Gavrilescu, M. (2013). Environmental impact assessment of high pressure water scrubbing biogas upgrading technology. CLEAN–Soil, Air, Water, 41(9), 917-927. DOI: https://doi.org/10.1002/clen.201200303.

Cozma, P., Wukovits, W., Friedl, A., & Gavrilescu, M. (2012). Biogas upgrading using water scrubbing technology. Chem Eng Tome.

Cozma, P., Wukovits, W., Mămăligă, I., Friedl, A., & Gavrilescu, M. (2013). Analysis and modeling of the solubility of biogas components in water for physical absorption processes. Environmental engineering & management journal.

Cozma, P., Wukovits, W., Mămăligă, I., Friedl, A., & Gavrilescu, M. (2014). Modeling and simulation of high pressure water scrubbing technology applied for biogas upgrading. Clean Technologies and Environmental Policy, 17(2), 373-391. DOI: https://doi.org/10.1007/s10098-014-0787-7.

Dorf, R. C. (2004). The Engineering Handbook, Second Edition. CRC Press, EUA.

Faramawy, S., Zaki, T., & Sakr, A. E. (2016). Natural gas origin, composition, and processing: A review. Journal of Natural Gas Science and Engineering, 34, 34-54.. DOI: https://doi.org/10.1016/j.jngse.2016.06.030.

Gasparovic, C. L. M. (2014). Simulação e controle de uma coluna de absorção para purificação de biogás: avaliação da viabilidade técnica e econômica do processo (Bachelor's thesis, Universidade Tecnológica Federal do Paraná). http://repositorio.utfpr.edu.br/jspui/handle/1/12529.

Hoyer, K., Hulteberg, C., Svensson, M., Jernberg, J., & Nörregård, Ö. (2016). Biogas upgrading-technical review. https://lup.lub.lu.se/record/9e1c64bd-efe6-4cc4-88d5-c79eab06fcc5.

IPCC (2005). IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/03/srccs_wholereport-1.pdf.

Kapoor, R., Subbarao, P. M. V., Vijay, V. K., Shah, G., Sahota, S., Singh, D., & Verma, M. (2017). Factors affecting methane loss from a water scrubbing based biogas upgrading system. Applied Energy, 208, 1379-1388. DOI: https://doi.org/10.1016/j.apenergy.2017.09.017.

Kim, J. H., Lee, J. H., Lee, I. Y., Jang, K. R., & Shim, J. G. (2011). Performance evaluation of newly developed absorbents for CO2 capture. Energy Procedia, 4, 81-84. DOI: https://doi.org/10.1016/j.egypro.2011.01.026.

Kister, H. Z. (1992). Distillation design, First Edition. McGraw-Hill Book Company.

Lima, J. C. F., Costa, J. C. da, Mattedi, S., & Góis, L. M. N. de . (2021). Flooding and loading in packed columns absorption. Research, Society and Development, 10(3), e29410312369. DOI: https://doi.org/10.33448/rsd-v10i3.12369.

Lizarazu, M. S. D. (2016). Otimização multiobjetivo aplicada à eficiência energética de torres de resfriamento. http://www.bdtd.uerj.br/handle/1/11839.

Magalhães, E. A., de Souza, S. N. M., de Lima Afonso, A. D., & Ricieri, R. P. (2004). Confecção e avaliação de um sistema de remoção do CO2 contido no biogás. Acta Scientiarum. Technology, 26(1), 11-19. DOI: https://doi.org/10.4025/actascitechnol.v26i1.1537.

Martins, P. R. L. (2011). Avaliação do processo de absorção de CO2 com aminas utilizando o HYSYS® (Doctoral dissertation, Dissertação (Mestrado)–Universidade Federal do Rio de Janeiro). http://epqb.eq.ufrj.br/download/avaliacao-do-processo-de-absorcao-de-co2-com-aminas-utilizando-hysys.pdf.

Mello, L. C. D. (2013). Estudo do processo de absorção de CO2 em soluções de aminas empregando-se coluna recheada (Doctoral dissertation, Universidade de São Paulo). DOI: https://doi.org/10.11606/T.3.2013.tde-18082014-114022.

Mumford, K. A., Smith, K. H., Anderson, C. J., Shen, S., Tao, W., Suryaputradinata, Y. A., Qader, A., Hooper, B., Innocenzi, R.A., Kentish, S.E., & Stevens, G. W. (2012). Post-combustion capture of CO2: results from the solvent absorption capture plant at Hazelwood power station using potassium carbonate solvent. Energy & fuels, 26(1), 138-146. DOI: https://doi.org/10.1021/ef201192n.

Nanxiang Chemical Packing (2022). Plastic Pall Ring. http://www.nxpacking.com/plastic-random-packing/plastic-pall-ring.html.

Nock, W. J., Walker, M., Kapoor, R., & Heaven, S. (2014). Modeling the water scrubbing process and energy requirements for CO2 capture to upgrade biogas to biomethane. Industrial & Engineering Chemistry Research, 53(32), 12783-12792. DOI: https://doi.org/10.1021/ie501280p.

Norton (1977). Design Information for Packed Towers. Bulletin DC-11, Akron.

Patuzzo, G. S. (2019). Otimização e análise do processo de absorção por water scrubbing no refino de biogás.

Pereira, A. S., Shitsuka D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM. https://www.ufsm.br/app/uploads/sit

es/358/2019/02/Metodologia-da-Pesquisa-Cientifica_final.pdf.

Rasi, S., Läntelä, J., & Rintala, J. (2014). Upgrading landfill gas using a high pressure water absorption process. Fuel, 115, 539-543. DOI: https://doi.org/10.1016/j.fuel.2013.07.082.

Rodrigues, M. I., Iemma, A. F. (2014). Planejamento Experimental e otimização de processos, 3ª edição. Campinas, SP.

Seman, N. A., & Harun, N. (2019, November). Simulation of pressurized water scrubbing process for biogas purification using Aspen Plus. In IOP Conference Series: Materials Science and Engineering (Vol. 702, No. 1, p. 012040). IOP Publishing. DOI: https://doi.org/10.1088/1757-899X/702/1/012040.

Shibata, F. S. (2017). Absorção de gás carbônico para beneficiamento de biogás utilizando carbonatos em coluna recheada (Doctoral dissertation, Universidade de São Paulo). DOI: https://doi.org/10.11606/D.3.2017.tde-24102017-112603.

Struk, M., Kushkevych, I., & Vítězová, M. (2020). Biogas upgrading methods: recent advancements and emerging technologies. Reviews in Environmental Science and Bio/Technology, 19(3), 651-671. DOI: https://doi.org/10.1007/s11157-020-09539-9.

Vilela, F.H. (2014). Influência do posicionamento do distribuidor de líquido na eficiência de absorção de dióxido de carbono em torre de absorção (Master dissertation, Universidade Santa Cecília, São Paulo) . https://unisanta.br/arquivos/mestrado%5Cmecanica%5Cdissertacoes%5Cdissertacao_fernando_henrique_vilela.pdf.

Volkers, B. D. (2016). Carbon dioxide for calcite scale control in cooling water systems (Doctoral dissertation, Faculty of Science and Engineering). https://fse.studenttheses.ub.rug.nl/15531/2/Master_Thesis_Beerd-Dries_Volk_1.pdf.

Wall, D. M., Dumont, M., & Murphy, J. D. (2018). Green gas: Facilitating a future green gas grid through the production of renewable gas. IEA Bioenergy. https://www.ieabioenergy.com/wp-content/uploads/2018/04/green_gas_web_end.pdf.

Xu, Y., Huang, Y., Wu, B., Zhang, X., & Zhang, S. (2015). Biogas upgrading technologies: Energetic analysis and environmental impact assessment. Chinese Journal of Chemical Engineering, 23(1), 247-254. DOI: https://doi.org/10.1016/j.cjche.2014.09.048.

Publicado

24/08/2022

Cómo citar

WATANABE NETO, M.; GÓIS, L. M. N. de. Simulación y optimización de la absorción de CO2 con agua en el tratamiento del biogás. Research, Society and Development, [S. l.], v. 11, n. 11, p. e348111133667, 2022. DOI: 10.33448/rsd-v11i11.33667. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33667. Acesso em: 27 nov. 2024.

Número

Sección

Ingenierías