Neurofeedback and brain-computer interface: development and evaluation of a game designed to help in the detection of ADHD
DOI:
https://doi.org/10.33448/rsd-v11i12.33752Keywords:
Neurofeedback; Attention Deficit Disorder with Hyperactivity; Brain-Computer Interfaces; Neuropsychological tests.Abstract
Neuropsychological assessment uses interviews, observations, and the application of tests to assist in the investigation and diagnosis process. Some technologies have emerged to assist neuropsychological assessment and therapy, such as neurofeedback. We describe the construction process of a neurofeedback game with a Brain-Computer Interface wireless aimed at helping the detection of ADHD (Attention Deficit Hyperactivity Disorder). Two children, one with and one without the disorder, tested the tool. Regarding usability, the experiments showed that both five-year-old participants could fully use the game, performing all the tasks contained in it. The EEG wave behaviors obtained by the solution for the child who had the disorder were like those of ADHD patients found in other studies. In particular, the data generated showed alpha-type activities more frequently in children with ADHD.
References
Abiri, R., Borhani, S., Sellers, E. W., Jiang, Y., & Zhao, X. (2019). A comprehensive review of EEG-based brain–computer interface paradigms. Journal of neural engineering, 16(1), 011001.
Alchalabi, A. E., Shirmohammadi, S., Eddin, A. N., & Elsharnouby, M. (2018). FOCUS: Detecting ADHD patients by an EEG-based serious game. IEEE Transactions on Instrumentation and Measurement, 67(7), 1512-1520.
Anderson, T., & Shattuck, J. (2012). Design-based research: A decade of progress in education research?. Educational researcher, 41(1), 16-25.
Barbarini, T. D. A. (2020). Corpos,“mentes”, emoções: uma análise sobre TDAH e socialização infantil. Psicologia & sociedade, 32.
Burwell, S., Sample, M., & Racine, E. (2017). Ethical aspects of brain computer interfaces: a scoping review. BMC medical ethics, 18(1), 1-11.
Castro, C. X. L., & de Lima, R. F. (2018). Consequências do transtorno do déficit de atenção e hiperatividade (TDAH) na idade adulta. Revista Psicopedagogia, 35(106), 61-72.
Chakladar, D. D., & Chakraborty, S. (2019). Feature extraction and classification in brain-computer interfacing: Future research issues and challenges. Natural Computing for Unsupervised Learning, 101-131.
Chen, X., Huang, X., Wang, Y., & Gao, X. (2020). Combination of augmented reality based brain-computer interface and computer vision for high-level control of a robotic arm. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(12), 3140-3147.
da Costa, N. M. G. B., Marçal, E., de Carvalho, M. M., & Barbosa, T. D. C. S. (2021). Uso de interfaces cérebro-computador em crianças com TDAH: Uma revisão sistemática. Research, Society and Development, 10(7), e51110716929-e51110716929.
Cortese, S., & Castellanos, F. X. (2013). TDAH e neurociência. Bisanz J, ed. tema. Tremblay RE, Boivin M, Peters RDeV, eds. Enciclopédia sobre o Desenvolvimento na Primeira Infância, 1-8.
Czech, A. (2021, September). Brain-computer interface use to control military weapons and tools. In International Scientific Conference on Brain-Computer Interfaces BCI Opole (pp. 196-204). Springer, Cham.
Dalgalarrondo P. (2000). Psicopatologia e semiologia dos transtornos mentais. Porto Alegre.
Dias, F. A. F., Dias, V. J. F., Dutra, B. D. A. L., Marques, A. C. S., Marçal, E., Lucena, A. D. R., & Crispim Ribeiro, J. (2020). Mobile app for pre-and intraoperative assessment of astigmatism correction with toric intraocular lenses in cataract surgery. Journal of Ophthalmology, 2020.
de Aquino Ferreira, L. F., Benevides, A. M. L. N., Rabelo, J. A. F., Medeiros, M. S., de Barros Filho, E. M., Sanders, L. L. O., & Peixoto, R. A. C. (2022). Desenvolvimento, Satisfação e Usabilidade de plataforma móvel para monitoramento da saúde mental de estudantes universitários. Research, Society and Development, 11(2), e19911225525-e19911225525.
Fukushima, A., Morooka, R., Tanaka, H., Kentaro, H., Tugawa, A., & Hanyu, H. (2021). Classification of dementia type using the brain-computer interface. Artificial Life and Robotics, 26(2), 216-221.
Guan, C., Lim, C. G., Fung, D., Zhou, H. J., Krishnan, R., & Lee, T. S. (2020, February). BCI facilitates the improvement of cognitive functions in children and elderly. In 2020 8th International Winter Conference on Brain-Computer Interface (BCI) (pp. 1-2). IEEE.
Hafeez, T., Umar Saeed, S. M., Arsalan, A., Anwar, S. M., Ashraf, M. U., & Alsubhi, K. (2021). EEG in game user analysis: A framework for expertise classification during gameplay. Plos one, 16(6), e0246913.
Hammond, D. C. (2011). What is neurofeedback: An update. Journal of Neurotherapy, 15(4), 305-336.
Jafri, S. R. A., Hamid, T., Mahmood, R., Alam, M. A., Rafi, T., Ul Haque, M. Z., & Munir, M. W. (2019). Wireless brain computer interface for smart home and medical system. Wireless Personal Communications, 106(4), 2163-2177.
Jamil, N., Belkacem, A. N., Ouhbi, S., & Guger, C. (2021). Cognitive and Affective Brain–Computer Interfaces for Improving Learning Strategies and Enhancing Student Capabilities: A Systematic Literature Review. IEEE Access.
Janani, A., & Sasikala, M. (2017). Investigation of different approaches for noise reduction in functional near-infrared spectroscopy signals for brain–computer interface applications. Neural Computing and Applications, 28(10), 2889-2903.
Koudelková, Z., & Strmiska, M. (2018). Introduction to the identification of brain waves based on their frequency. In MATEC Web of Conferences. EDP Sciences.
Lelis, B. A. (2014). Utilização de Ondas Cerebrais para Controle de Componentes Eletrônicos. Semana Acadêmica, Fortaleza, 1(52).
Li, M., Li, F., Pan, J., Zhang, D., Zhao, S., Li, J., & Wang, F. (2021). The mindgomoku: An online P300 BCI game based on Bayesian deep learning. Sensors, 21(5), 1613.
Liu, Y., Sourina, O., & Hou, X. (2014, October). Neurofeedback games to improve cognitive abilities. In 2014 International Conference on Cyberworlds (pp. 161-168). IEEE.
Loo, S. K., & Barkley, R. A. (2005). Clinical utility of EEG in attention deficit hyperactivity disorder. Applied neuropsychology, 12(2), 64-76.
Magila, M. C., & Caramelli, P. (2000). Funções executivas no idoso. Forlenza OV, Caramelli P, organizadores. Neuropsiquiatria Geriátrica. São Paulo, 517-25.
Malmivuo, J., & Plonsey, R. (1995). Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, USA.
Marcal, E., de Castro Andrade, R. M., & Viana, W. (2017). Development and Evaluation of a Model-Driven System to Support Mobile Learning in Field Trips. J. Univers. Comput. Sci., 23(12), 1147-1171.
da Mata, L. M. A. (2016). Anxiety reducing through a neurofeedback serious game with dynamic difficulty adjustment (Doctoral dissertation, Instituto Politecnico do Porto (Portugal)).
Mercado, J., Espinosa-Curiel, I., Escobedo, L., & Tentori, M. (2019). Developing and evaluating a BCI video game for neurofeedback training: the case of autism. Multimedia Tools and Applications, 78(10), 13675-13712.
Mota, M. M. P. E. D., Banhato, E. F. C., Silva, K. C. A. D., & Cupertino, A. P. F. B. (2008). Triagem cognitiva: comparações entre o mini-mental e o teste de trilhas. Estudos de psicologia (Campinas), 25, 353-359.
Mudgal, S. K., Sharma, S. K., Chaturvedi, J., & Sharma, A. (2020). Brain computer interface advancement in neurosciences: Applications and issues. Interdisciplinary Neurosurgery, 20, 100694.
Nigdelis, V., & Kosta-Tsolaki, M. (2017). Neuropricing: Perspectives of brain reactions to price exposure. Hellenic Journal of Nuclear Medicine, 20(IKEEART-2018-1135), 196-203.
Park, K., Kihl, T., Park, S., Kim, M. J., & Chang, J. (2019). Fairy tale directed game-based training system for children with ADHD using BCI and motion sensing technologies. Behaviour & Information Technology, 38(6), 564-577.
Portugal, V. (2017). Olhando para dentro: Insight, consciência e transcendência. Gryphus Editora.
Pereira, R. V. S., Kubrusly, M., & Marçal, E. (2017). Desenvolvimento, utilização e avaliação de uma aplicação móvel para educação médica: um estudo de caso em anestesiologia. Renote, 15(1).
Silva, R. S., Flores-Mendonza, C., & Telles, M. (2013). Teste de Habilidades e Conhecimentos Pré-Alfabetização (THCP). São Paulo: Vetor.
Soares, J. L., da Silva, A. R., & de Oliveira, R. J. (2022). Análise da produção científica sobre os aplicativos de saúde móvel mHealth para educação, tratamento e reabilitação de AVE-Acidente Vascular Encefálico. Research, Society and Development, 11(8), e59311831572-e59311831572.
Teruel, M. A., Navarro, E., Romero, D., García, M., Fernández-Caballero, A., & González, P. (2017, June). An innovative tool to create neurofeedback games for ADHD treatment. In International Work-Conference on the Interplay Between Natural and Artificial Computation (pp. 183-192). Springer, Cham.
Uhlhaas, P. J., Haenschel, C., Nikolić, D., & Singer, W. (2008). The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophrenia bulletin, 34(5), 927-943.
Vakil, E. (2012). Neuropsychological assessment: Principles, rationale, and challenges. Journal of clinical and experimental neuropsychology, 34(2), 135-150.
Valente, P. S. D. M. C., Carneiro, C. L. B., de Aguiar, R. G. P., de Souza Júnior, F. E. A., Maciel, A. A., Marçal, E., & Ribeiro, J. C. (2021). Development and usability evaluation of an application for patients with glaucoma. International Ophthalmology, 41(10), 3419-3425.
Vasiljevic, G. A. M., & de Miranda, L. C. (2020). Brain–computer interface games based on consumer-grade EEG Devices: A systematic literature review. International Journal of Human–Computer Interaction, 36(2), 105-142.
Lv, Z., Qiao, L., Wang, Q., & Piccialli, F. (2020). Advanced machine-learning methods for brain-computer interfacing. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18(5), 1688-1698.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Edgar Marçal; Nayara Magda Gomes Barbosa da Costa; Carlos Eduardo Menezes; Arnaldo Aires Peixoto Júnior; Lia Lira Olivier Sanders; Keviny Magalhães Queiroz; Ellen Castro Oliveira; Luana Maria Queiroga Ponciano Mota
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.