Production of activated carbon from malt bagasse with chemical activation using different activating agents

Authors

DOI:

https://doi.org/10.33448/rsd-v11i11.33766

Keywords:

Hydrothermal carbonization; Adsorption; Activated carbon; Waste; Dyes.

Abstract

Brazil is the third largest beer producer in the world, reaching approximately 14 billion liters per year. If, on the one hand, the expansion of the brewing sector in the country produces a significant increase in the Brazilian GDP, it also causes environmental impacts inherent to the process, since different residues are produced during production and the main one is malt bagasse. This work aimed to investigate the use of malt bagasse through the production of coal via hydrothermal synthesis with subsequent chemical activation by pyrolysis. First, the parameters time (4, 14 and 24h) and temperature (150, 175, 225 and 250 ºC) of hydrothermal carbonization were evaluated, having as a response the efficiency of removal of methylene blue dye in aqueous solution. Subsequently, three activating agents (KOH, H3PO4 and ZnCl2) were used in two mass proportions (1:1 and 2:1) for the production of activated carbons. The different conditions were evaluated in terms of surface area (SBET) and adsorption efficiency. Chemical activation was able to increase the surface area of the carbons by approximately 200 times. Activated carbon with KOH showed better performance in removing the dye, reaching an efficiency of 95.39% under the conditions submitted. The increase in the proportion of activating agent led to greater adsorption efficiencies, as it increased the surface area of activated carbons. All coals showed a predominance of mesopores, confirmed by N2 adsorption and desorption isotherms and pore size distribution.

References

Andrade, R. C., Almeida, C. F., Suegama, P. H., Arruda, E. J., Arroyo, P. A., & Carvalho, C. T. (2015). Buriti palm stem as a potential renewable source for activated carbon production. Environmental Technology & Innovation, 3, 28-34. https://doi.org/10.1016/j.eti.2015.02.002

Associação Brasileira da Indústria da Cerveja- CERVBRASIL. (2020). Disponível em: http://www.cervbrasil.org.br/novo_site/mercado-cervejeiro/. Acesso em: 11/01/2022

Bhatnagar A, Hogland W, Marques M, & Sillanpää M (2013) An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal, 219: 499-511. https://doi: 10.1016/j.cej.2012.12.038.

Franciski, M. A., Peres, E. C., Godinho, M., Perondi, D., Foletto, E. L., Collazzo, G. C., & Dotto, G. L. (2018). Development of CO2 activated biochar from solid wastes of a beer industry and its application for methylene blue adsorption. Waste Management, 78, 630-638. https://doi.org/10.1016/j.wasman.2018.06.040

Jackowski, M., Lech, M., Veetil, V. K., Arora, A., Seruga, P., Krochmalny, K., & Baranowski, M. (2020). HTC of wet residues of the brewing process: Comprehensive characterization of produced beer, spent grain and valorized residues. Energies, 13 (8). https://doi.org/10.3390/en13082058

Juchen, P. T., Piffer, H. H., Veit, M. T., Gonçalves, G. C., Palácio, S. M., & Zanette, J. C. (2018). Biosorption of reactive blue BF-5G dye by malt bagasse: kinetic and equilibrium studies. Journal of Environmental Chemical Engineering, 6 (6), 7111-7118. https://doi.org/10.1016/j.jece.2018.11.009

Lee, J., Kim, K-H., & Kwon, E. E. (2017). Biochar as a Catalyst. Renewable and Sustainable Energy Reviews, 77, 70-79. https://doi.org/10.1016/j.rser.2017.04.002

Lopes, G. K. P., Zanella, H. G., Spessato, L., Ronix, A., Viero, P., Fonseca, J. M., Yokoyama, J. T. C., Cazetta, A. L., & Almeida, V. C. (2021). Steam-activated carbon from malt bagasse: Optimization of preparation conditions and adsorption studies of sunset yellow food dye. Arabian Journal of Chemistry, 14 (3), 103001. https://doi.org/10.1016/j.arabjc.2021.103001

Lopes, R. P., & Astruc, D. (2020). Biochar as a support for nanocatalysts and other reagents: Recent advances and applications. Coordination Chemistry Reviews, 426, 213585. https://doi.org/10.1016/j.ccr.2020.213585

Machado, L. M. M., Lütke, S. F., Perondi, D., Godinho, M., Oliveira, M. L. S., Collazzo, G. C., & Dotto, G. L. (2020). Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars. Journal of Environmental Chemical Engineering, 8 (6). https://doi.org/10.1016/j.jece.2020.104473

Ministério da Agricultura, Pecuária e Abastecimento – MAPA. (2022). ANUÁRIO DA CERVEJA 2020. https://www.gov.br/agricultura/pt-br/assuntos/noticias/com-crescimento-de-14-4-em-2020-numero-de-cervejarias-registradas-no-brasil-passa-de-1-3-mil/anuariocerveja2.pdf.

Morais, R. M., Santana, G. M., Lelis, R. C. C., Paes, J. B., Schueler, M. V. E., & Morbeck, F. L. (2019). Produção e desempenho de carvão ativado fisicamente a partir de Bambusa vulgaris. Brazilian Journal of Forestry Research, 39 (1). https://doi.org/10.4336/2019.pfb.39e201801668

Nasrullah, A., Saad, B., Bhat, A. H., Khan, A. S., Danish, M., Isa, M. H., &Naeem, A. (2019). Mangosteen peel waste as a sustainable precursor for high surface area mesoporous activated carbon: Characterization and application for methylene blue removal. Journal of Cleaner Production, 211, 1190-1200. https://doi.org/10.1016/j.jclepro.2018.11.094

Oliveira, G. F., Andrade, R. C., Trindade, M. A. G., Andrade, H. M. C., & Carvalho, C. T. (2017). Thermogravimetric and spectroscopic study (TG–DTA/FT–IR) of activated carbon from the renewable biomass source babassu. Química Nova, 40 (3). https://doi.org/10.21577/0100-4042.20160191

Pego, M. F. F., Bianchi, M. L., Carvalho, J. A., & Veiga, T. R. L. A. (2019). Surface modification of activated carbon by corona treatment. Anais da Academia Brasileira de Ciências, 91(1). 10.1590/0001-3765201920170947

Reinehr, R. C. R., Giordanni, P. R., Alves, A. A. de A., Klen, M. R. F., & Tones, A. R. M. (2019). Application of the statistical experimental design to optimize the electrocoagulation technology in the treatment of cosmetic industry wastewater. Journal Desalination and Water Treatment, 138, 27-35. 10.5004/dwt.2019.23282

Rocha, D. N., Barbosa, E. G., Renato, N. S., Varejão, E. V. V., Silva, U. P., Araujo, M. E. V., & Martins, M, A. (2020). Improving biofuel production by thermochemical conversion of defatted Scenedesmus obliquus biomass. Journal of Cleaner Production, 275, 124090. https://doi.org/10.1016/j.jclepro.2020.124090

Rodríguez-Reinoso, F.; & Molina-Sabio, M. (2004). El carbón activado como adsorbente en descontaminacion ambiental. Adsorbentes en la solución de algunos problemas ambientales. Madrid: Ediciones, p. 37–52.

Teixeira, V. G., Coutinho, F. M. B., & Gomes, A. S. (2001). Principais métodos de caracterização da porosidade de resinas à base de divinilbenzeno. Química Nova, 24 (6). https://doi.org/10.1590/S0100-40422001000600019

Wong S, Ngadi N, Inuwa I M, & Hassan O. (2018) Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review. Journal of Cleaner Production, 175: 361-375. https://doi: 10.1016/j.jclepro.2017.12.059

Published

24/08/2022

How to Cite

BARBOSA, M. C. .; ARAÚJO, F. P. da S. .; ALVES, A. P. S. .; MENDES, A. L. G. .; SOUSA, R. de C. S. .; FARIA, W. L. da S. .; ZUNIGA, A. D. G. . Production of activated carbon from malt bagasse with chemical activation using different activating agents. Research, Society and Development, [S. l.], v. 11, n. 11, p. e324111133766, 2022. DOI: 10.33448/rsd-v11i11.33766. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33766. Acesso em: 7 jan. 2025.

Issue

Section

Agrarian and Biological Sciences