Producción de carbón activado a partir de bagazo de malta con activación química utilizando diferentes activantes

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i11.33766

Palabras clave:

Carbonización hidrotermal; Adsorción; Carbón activado; Desperdicio; Tintes.

Resumen

Brasil es el tercer mayor productor de cerveza del mundo, alcanzando aproximadamente 14 mil millones de litros por año. Si, por un lado, la expansión del sector cervecero en el país produce un aumento significativo en el PIB brasileño, también provoca impactos ambientales inherentes al proceso, ya que se producen diferentes residuos durante la producción y el principal es el bagazo de malta. Este trabajo tuvo como objetivo investigar el aprovechamiento del bagazo de malta a través de la producción de carbón mediante síntesis hidrotermal con posterior activación química por pirólisis. En primer lugar, se evaluaron los parámetros tiempo (4, 14 y 24 h) y temperatura (150, 175, 225 y 250 ºC) de carbonización hidrotermal, teniendo como respuesta la eficiencia de remoción del colorante azul de metileno en solución acuosa. Posteriormente, se utilizaron tres agentes activadores (KOH, H3PO4 y ZnCl2) en dos proporciones másicas (1:1 y 2:1) para la producción de carbones activados. Las diferentes condiciones se evaluaron en términos de área superficial (SBET) y eficiencia de adsorción. La activación química pudo aumentar el área superficial de los carbones en aproximadamente 200 veces. El carbón activado con KOH mostró un mejor desempeño en la remoción del colorante, alcanzando una eficiencia del 95,39% en las condiciones presentadas. El aumento de la proporción de agente activador condujo a mayores eficiencias de adsorción, ya que aumentó el área superficial de los carbones activados. Todos los carbones mostraron un predominio de mesoporos, confirmado por las isotermas de adsorción y desorción de N2 y la distribución del tamaño de los poros.

Citas

Andrade, R. C., Almeida, C. F., Suegama, P. H., Arruda, E. J., Arroyo, P. A., & Carvalho, C. T. (2015). Buriti palm stem as a potential renewable source for activated carbon production. Environmental Technology & Innovation, 3, 28-34. https://doi.org/10.1016/j.eti.2015.02.002

Associação Brasileira da Indústria da Cerveja- CERVBRASIL. (2020). Disponível em: http://www.cervbrasil.org.br/novo_site/mercado-cervejeiro/. Acesso em: 11/01/2022

Bhatnagar A, Hogland W, Marques M, & Sillanpää M (2013) An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal, 219: 499-511. https://doi: 10.1016/j.cej.2012.12.038.

Franciski, M. A., Peres, E. C., Godinho, M., Perondi, D., Foletto, E. L., Collazzo, G. C., & Dotto, G. L. (2018). Development of CO2 activated biochar from solid wastes of a beer industry and its application for methylene blue adsorption. Waste Management, 78, 630-638. https://doi.org/10.1016/j.wasman.2018.06.040

Jackowski, M., Lech, M., Veetil, V. K., Arora, A., Seruga, P., Krochmalny, K., & Baranowski, M. (2020). HTC of wet residues of the brewing process: Comprehensive characterization of produced beer, spent grain and valorized residues. Energies, 13 (8). https://doi.org/10.3390/en13082058

Juchen, P. T., Piffer, H. H., Veit, M. T., Gonçalves, G. C., Palácio, S. M., & Zanette, J. C. (2018). Biosorption of reactive blue BF-5G dye by malt bagasse: kinetic and equilibrium studies. Journal of Environmental Chemical Engineering, 6 (6), 7111-7118. https://doi.org/10.1016/j.jece.2018.11.009

Lee, J., Kim, K-H., & Kwon, E. E. (2017). Biochar as a Catalyst. Renewable and Sustainable Energy Reviews, 77, 70-79. https://doi.org/10.1016/j.rser.2017.04.002

Lopes, G. K. P., Zanella, H. G., Spessato, L., Ronix, A., Viero, P., Fonseca, J. M., Yokoyama, J. T. C., Cazetta, A. L., & Almeida, V. C. (2021). Steam-activated carbon from malt bagasse: Optimization of preparation conditions and adsorption studies of sunset yellow food dye. Arabian Journal of Chemistry, 14 (3), 103001. https://doi.org/10.1016/j.arabjc.2021.103001

Lopes, R. P., & Astruc, D. (2020). Biochar as a support for nanocatalysts and other reagents: Recent advances and applications. Coordination Chemistry Reviews, 426, 213585. https://doi.org/10.1016/j.ccr.2020.213585

Machado, L. M. M., Lütke, S. F., Perondi, D., Godinho, M., Oliveira, M. L. S., Collazzo, G. C., & Dotto, G. L. (2020). Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars. Journal of Environmental Chemical Engineering, 8 (6). https://doi.org/10.1016/j.jece.2020.104473

Ministério da Agricultura, Pecuária e Abastecimento – MAPA. (2022). ANUÁRIO DA CERVEJA 2020. https://www.gov.br/agricultura/pt-br/assuntos/noticias/com-crescimento-de-14-4-em-2020-numero-de-cervejarias-registradas-no-brasil-passa-de-1-3-mil/anuariocerveja2.pdf.

Morais, R. M., Santana, G. M., Lelis, R. C. C., Paes, J. B., Schueler, M. V. E., & Morbeck, F. L. (2019). Produção e desempenho de carvão ativado fisicamente a partir de Bambusa vulgaris. Brazilian Journal of Forestry Research, 39 (1). https://doi.org/10.4336/2019.pfb.39e201801668

Nasrullah, A., Saad, B., Bhat, A. H., Khan, A. S., Danish, M., Isa, M. H., &Naeem, A. (2019). Mangosteen peel waste as a sustainable precursor for high surface area mesoporous activated carbon: Characterization and application for methylene blue removal. Journal of Cleaner Production, 211, 1190-1200. https://doi.org/10.1016/j.jclepro.2018.11.094

Oliveira, G. F., Andrade, R. C., Trindade, M. A. G., Andrade, H. M. C., & Carvalho, C. T. (2017). Thermogravimetric and spectroscopic study (TG–DTA/FT–IR) of activated carbon from the renewable biomass source babassu. Química Nova, 40 (3). https://doi.org/10.21577/0100-4042.20160191

Pego, M. F. F., Bianchi, M. L., Carvalho, J. A., & Veiga, T. R. L. A. (2019). Surface modification of activated carbon by corona treatment. Anais da Academia Brasileira de Ciências, 91(1). 10.1590/0001-3765201920170947

Reinehr, R. C. R., Giordanni, P. R., Alves, A. A. de A., Klen, M. R. F., & Tones, A. R. M. (2019). Application of the statistical experimental design to optimize the electrocoagulation technology in the treatment of cosmetic industry wastewater. Journal Desalination and Water Treatment, 138, 27-35. 10.5004/dwt.2019.23282

Rocha, D. N., Barbosa, E. G., Renato, N. S., Varejão, E. V. V., Silva, U. P., Araujo, M. E. V., & Martins, M, A. (2020). Improving biofuel production by thermochemical conversion of defatted Scenedesmus obliquus biomass. Journal of Cleaner Production, 275, 124090. https://doi.org/10.1016/j.jclepro.2020.124090

Rodríguez-Reinoso, F.; & Molina-Sabio, M. (2004). El carbón activado como adsorbente en descontaminacion ambiental. Adsorbentes en la solución de algunos problemas ambientales. Madrid: Ediciones, p. 37–52.

Teixeira, V. G., Coutinho, F. M. B., & Gomes, A. S. (2001). Principais métodos de caracterização da porosidade de resinas à base de divinilbenzeno. Química Nova, 24 (6). https://doi.org/10.1590/S0100-40422001000600019

Wong S, Ngadi N, Inuwa I M, & Hassan O. (2018) Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review. Journal of Cleaner Production, 175: 361-375. https://doi: 10.1016/j.jclepro.2017.12.059

Publicado

24/08/2022

Cómo citar

BARBOSA, M. C. .; ARAÚJO, F. P. da S. .; ALVES, A. P. S. .; MENDES, A. L. G. .; SOUSA, R. de C. S. .; FARIA, W. L. da S. .; ZUNIGA, A. D. G. . Producción de carbón activado a partir de bagazo de malta con activación química utilizando diferentes activantes. Research, Society and Development, [S. l.], v. 11, n. 11, p. e324111133766, 2022. DOI: 10.33448/rsd-v11i11.33766. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33766. Acesso em: 8 ene. 2025.

Número

Sección

Ciencias Agrarias y Biológicas