Renewable energy sources: research, trends, and perspectives on sustainable practices
DOI:
https://doi.org/10.33448/rsd-v11i11.33893Keywords:
Renewable energy sources; Sustainable practices; Solar and wind technologies.Abstract
The use of renewable energy sources in various fields of knowledge is a strong global trend, thanks to the numerous socioeconomic and environmental advantages arising from the adoption of sustainable practices, which allow promoting a balance between the preservation of the environment and the well-being of people. being of the current and future population. The development of new technologies based on solar and wind energy has been considered one of the many key solutions to meet the high energy demand worldwide. However, despite the many benefits related to sustainability, the world scenario shows that we still do not have such a sustainable scenario and it is still climbing positions slowly, due to issues that include financial support from the government, research incentives, lack of knowledge of the population, a sustainable vision of entrepreneurs and among other factors. In this work, a systematic literature review was carried out to assess the main measures, trends adopted, and a greater understanding of renewable energy sources. Some advantages and disadvantages involving solar and wind technologies are discussed in this article, to contribute significantly to the list of main practices and perspectives on the generation and production of energy from them. The results of these studies indicate that, despite the investments made, more investments are expected in research and installations of wind farms and better financing conditions for the adhesion of solar panels and wind turbines, aiming to overcome the current limitations of the renewable energy industry, considering given that this is a market that still needs exploration and investment in new research to expand this large area of study.
References
ABEEólica. (2021). Associação Brasileira de Energia Eólica e Novas Tecnologias. Boletimanual. https://abeeolica.org.br/energia-eolica/dados-abeeolica/
Aberle, A. G. (2009). Thin-film solar cells. Thin Solid Films, 517(17), 4706–4710.
Alim, M. A., Tao, Z., Abden, M. J., Rahman, A., Samali, B. (2020). Improving performance of solar roof tiles by incorporating phase change material. Solar Energy, 207, 1308–1320.
Alsharif, M. H., Kim, J., Kim, J. H. (2018). Opportunities and challenges of solar and wind energy in South Korea: A review. Sustainability, 10(6), 1822.
Balaji, V. R., & Sudha, M. (2016). Solar powered auto irrigation system. International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE), 20(2), 203–206.
Barroso, L. L., Oliveira, M., Galvão, M. E. M., Silva, G. J., Cunha, D., Silva, L. S., Cristo, J. P., Antunes, G.N. Cabral, E. L., Silva, J. A. C (2022). Aspectos gerais sobre a viabilidade de instalação de Energia Eólica no Brasil. Research, Society and Development, 11(9), e308911931781–e308911931781.
Bünzli, J.-C. G., Eliseeva, S. V. (2010). Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. Journal of Rare Earths, 28(6), 824–842.
Chaudhuri, A., Datta, R., Kumar, M. P., Davim, J. P., Pramanik, S. (2022). Energy conversion strategies for wind energy system: Electrical, mechanical and material aspects. Materials, 15(3), 1232.
Costa Ridelensky, M. (2021). A sustentabilidade ambiental de projetos de sucesso com diferentes alternativas de energia. Research, Society and Development, 10(11), e194101118380-e194101118380.
Efaz, E. T., Rhaman, M. M., Imam, S., Bashar, K. L., Kabir, F., Sakib, S. N., Mourtaza, M. D. E. (2021). A review of major technologies of thin-film solar cells. Engineering Research Express. 3. 032001.
EPE. (2021). Balanço energético nacional 2021. Empresa de pesqusia energetica. https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-601/topico-596/BEN2021.pdf
Gasparin, F. B. (2022). A Influência de Políticas Públicas para o Progresso da Geração Solar Fotovoltaica e Diversificação da Matriz Energética Brasileira. Revista Virtual de Química, 14(1), 77-81.
Goldemberg, J., Chu, S. (2010). Um futuro com energia sustentável: Iluminando o Caminho. FAPESP, Inter Academy Council.
Handore, A. V, Khandelwal, S. R., Karmakar, R., Jagtap, A. S., Handore, D. V. (2022). Bioconcrete: the promising prospect for green construction. In Ecological and Health Effects of Building Materials, 567–584.
Hoang, A. T., Nižetić, S., Olcer, A. I., Ong, H. C., Chen, W.-H., Chong, C. T., Thomas, S., Bandh, S. A., Nguyen, X. P. (2021). Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications. Energy Policy, 154, 112322.
Hosenuzzaman, M., Rahim, N. A., Selvaraj, J., Hasanuzzaman, M., Malek, A. B. M. A., Nahar, A. (2015). Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renewable and Sustainable Energy Reviews, 41, 284–297.
Hou, W., Xiao, Y., Han, G., & Lin, J.-Y. (2019). The applications of polymers in solar cells: A review. Polymers, 11(1), 143.
Hu, Y., Bai, Y., Luo, B., Wang, S., Hu, H., Chen, P., Lyu, M., Shapter, J., Rowan, A., Wang, L. (2019). A portable and efficient solar‐rechargeable battery with ultrafast photo‐charge/discharge rate. Advanced Energy Materials, 9(28), 1900872.
Hussein, A. A.-H., Batarseh, I. (2011). A review of charging algorithms for nickel and lithium battery chargers. IEEE Transactions on Vehicular Technology, 60(3), 830–838.
Jelle, B. P., Breivik, C., Røkenes, H. D. (2012). Building integrated photovoltaic products: A state-of-the-art review and future research opportunities. Solar Energy Materials and Solar Cells, 100, 69–96.
Jiang, P., Van Fan, Y., Klemeš, J. J. (2021). Impacts of COVID-19 on energy demand and consumption: Challenges, lessons and emerging opportunities. Applied Energy, 285, 116441.
Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., Kim, K.-H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82, 894–900.
Khan, J., Arsalan, M. H. (2016). Solar power technologies for sustainable electricity generation–A review. Renewable and Sustainable Energy Reviews, 55, 414–425.
Kim, J. Y., Lee, J.-W., Jung, H. S., Shin, H., Park, N.-G. (2020). High-efficiency perovskite solar cells. Chemical Reviews, 120(15), 7867–7918.
Kim, M., Jeong, J., Lu, H., Lee, T. K., Eickemeyer, F. T., Liu, Y., Choi, I. W., Choi, S. J., Jo, Y., Kim, H.-B. (2022). Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 375(6578), 302–306.
Lakatos, L., Hevessy, G., Kovács, J. (2011). Advantages and disadvantages of solar energy and wind-power utilization. World Futures, 67(6), 395–408.
Lee, C. W., Kim, O. Y., Lee, J. Y. (2014). Organic materials for organic electronic devices. Journal of Industrial and Engineering Chemistry, 20(4), 1198–1208.
Lima, L., Trindade, E., Alencar, L., Alencar, M., Silva, L. (2021). Sustainability in the construction industry: A systematic review of the literature. Journal of Cleaner Production, 289, 125730.
Liu, G., Jia, J., Zhang, K., Jia, X., Yin, Q., Zhong, W., Li, L., Huang, F., Cao, Y. (2019). 15% efficiency tandem organic solar cell based on a novel highly efficient wide‐bandgap nonfullerene acceptor with low energy loss. Advanced Energy Materials, 9(11), 1803657.
Liu, H., Yao, P., Latif, S., Aslam, S., Iqbal, N. (2022). Impact of Green financing, FinTech, and financial inclusion on energy efficiency. Environmental Science and Pollution Research, 29(13), 18955–18966.
Machado, C. T., Miranda, F. S. (2015). Energia Solar Fotovoltaica: uma breve revisão. Revista Virtual de Química, 7(1), 126–143.
Manthiram, A., Fu, Y., Su, Y.-S. (2013). Challenges and prospects of lithium–sulfur batteries. Accounts of Chemical Research, 46(5), 1125–1134.
Marques, W., Santos, A., Alves, E., Rollim, J., Pinto, M. (2022). O sol nasce para todos:sustentabilidade mediante telhas fotovoltaicas de concreto. Revista de Engenharia e Tecnologia, 14(1).
Martin-Ramos, P., Ramos-Silva, M. (2018). Lanthanide-based multifunctional materials: from OLEDs to SIMs. Elsevier.
Mekhilef, S., Faramarzi, S. Z., Saidur, R., Salam, Z. (2013). The application of solar technologies for sustainable development of agricultural sector. Renewable and Sustainable Energy Reviews, 18, 583–594.
Mishra, A., Bäuerle, P. (2012). Small molecule organic semiconductors on the move: promises for future solar energy technology. Angewandte Chemie International Edition, 51(9), 2020–2067.
Muneer, T., Gago, E. J., Berrizbeitia, S. E. (2022). The Coming of Age of Solar and Wind Power. Springer Nature.
Okasha, A. M., Ibrahim, H. G., Elmetwalli, A. H., Khedher, K. M., Yaseen, Z. M., Elsayed, S. (2021). Designing low-cost capacitive-based soil moisture sensor and smart monitoring unit operated by solar cells for greenhouse irrigation management. Sensors, 21(16), 5387.
Rahman, M. M., Khan, I., Field, D. L., Techato, K., Alameh, K. (2022). Powering agriculture: Present status, future potential, and challenges of renewable energy applications. Renewable Energy, 188, 731–749.
REN21. (2022). Renewable Energy Policy Network for the 21st Century. https://www.ren21.net/wp-content/uploads/2019/05/GSR2022_Full_Report.pdf
Rühle, S., Shalom, M., Zaban, A. (2010). Quantum‐dot‐sensitized solar cells. ChemPhysChem, 11(11), 2290–2304.
Sandoval Aguilar, R., Michaelides, E. E. (2021). Microgrid for a Cluster of Grid Independent Buildings Powered by Solar and Wind Energy. Applied Sciences, 11(19), 9214.
Schuss, C., Eichberger, B., Rahkonen, T. (2014). Design specifications and guidelines for efficient solar chargers of mobile phones. 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14), 1–5.
Sehrawat, P., Malik, R. K., Khatkar, S. P., Taxak, V. B. (2021). Highly efficient green-glimmering Y3Al5O12: Er3+ NPs for next generation electro-optic appliances, mainly white-LEDs and solar-cells. Chemical Physics Letters, 773, 138592.
Settino, J., Sant, T., Micallef, C., Farrugia, M., Staines, C. S., Licari, J., Micallef, A. (2018). Overview of solar technologies for electricity, heating and cooling production. Renewable and Sustainable Energy Reviews, 90, 892–909.
Silveira, V. F., Siqueira, J. A. C., do Nascimento, L. F. J., Tokura, L. K., Alovisi, A. M. T., Boas, M. A. V., ... & Debastiani, G. (2021). Comparative study of drip irrigation systems using indoor amorphous photovoltaic panels. Research, Society and Development, 10(11), e125101119288-e125101119288.
Shamshirband, S., Rabczuk, T., Chau, K.-W. (2019). A survey of deep learning techniques: application in wind and solar energy resources. IEEE Access, 7, 164650–164666.
Sharma, S., Jain, K. K., Sharma, A. (2015). Solar cells: in research and applications—a review. Materials Sciences and Applications, 6(12), 1145.
Silva, G. F., Silva, D. P., Silva, I. P., Silva, M. S., Bery, C. C. S., França, F. R. M. (2019). Energias alternativas: tecnologias sustentáveis para o nordeste brasileiro (1st ed.). Associação Acadêmica de Propriedade Intelectual–API.
Stančin, H., Mikulčić, H., Wang, X., Duić, N. (2020). A review on alternative fuels in future energy system. Renewable and Sustainable Energy Reviews, 128, 109927.
Teo, K. Y., Tiong, M. H., Wee, H. Y., Jasin, N., Liu, Z.-Q., Shiu, M. Y., Tang, J. Y., Tsai, J.-K., Rahamathullah, R., Khairul, W. M. (2017). The influence of the push-pull effect and a π-conjugated system in conversion efficiency of bis-chalcone compounds in a dye sensitized solar cell. Journal of Molecular Structure, 1143, 42–48.
Tsuei, C.-H., Sun, W.-S., Kuo, C.-C. (2010). Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting. Optics Express, 18(104), A640–A653.
Usman, M., Zeb, Z., Ullah, H., Suliman, M. H., Humayun, M., Ullah, L., Shah, S. N. A., Ahmed, U., Saeed, M. (2022). A review of metal-organic frameworks/graphitic carbon nitride composites for solar-driven green H2 production, CO2 reduction, and water purification. Journal of Environmental Chemical Engineering, 107548.
Wen, J., Zhao, D., Zhang, C. (2020). An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency. Renewable Energy, 162, 1629–1648.
Ye, H. Q., Li, Z., Peng, Y., Wang, C. C., Li, T. Y., Zheng, Y. X., Sapelkin, A., Adamopoulos, G., Hernández, I., Wyatt, P. B. (2014). Organo-erbium systems for optical amplification at telecommunications wavelengths. Nature Materials, 13(4), 382–386.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Raiane Sodré de Araújo; Flaviany Luise Nogueira de Sousa; Paulino Sousa Vanderley; Suzana Oliveira da Silva Bentes; Luiz Moreira Gomes; Fernanda Carla Lima Ferreira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.