Brain-machine interface: advances in neuroscience and the development of bioelectrodes
DOI:
https://doi.org/10.33448/rsd-v11i12.35046Keywords:
Neurosciences; Neurology; Rehabilitation.Abstract
Objective: To show the updates in this field of research in recent years. Methodology: This is a narrative review, which consist of more extensive publications. The Pubmed database and the Virtual Health Library (VHL) were used to search for articles. The following Health Sciences Descriptors (DeCS) and Medical Subject Headings(MeSH) were used : "Brain-Computer Interfaces", "Nervous System", "Cerebrum" and "Neurosciences." Articles published between the years 2017 and 2022, in Portuguese and English addressing brain-machine interface advances were included. Results: 17 articles were found that fit the inclusion criteria, all in English. The research demonstrated significant advances that can be employed in physical motor and sensory rehabilitation processes. Conclusion: The application of different protocols and methods was verified, which can be a hindrance to the replication of future studies; however, there were also advances in the development of biocompatible electrodes from axon extensions, which can reduce the inflammatory process in intracortical implants, and the improvement of coding and decoding by non-invasive methods coupled to different parts of the body.
References
Araki, T., Uemura, T., Yoshimoto, S., Takemoto, A., Noda, Y., Izumi, S., & Sekitani, T. (2019). Wireless Monitoring Using a Stretchable and Transparent Sensor Sheet Containing Metal Nanowires. Adv Mater , 32(15):e1902684. 10.1002/adma.201902684.
Barria, P., Pino, A., Tovar, N., Gomez-Vargas, D., Baleta, K., Díaz, C. A. R., Múnera, M., & Cifuentes, C. A.(2021). BCI-Based Control for Ankle Exoskeleton T-FLEX: Comparison of Visual and Haptic Stimuli with Stroke Survivors. Sensors (Basel), 21(19):6431. 10.3390/s21196431
Carino-Escobar, R. I., & Cantillo-Negrete, J. (2020). Interfaces cérebro-computador para reabilitação motora de membros superiores de pacientes com acidente vascular cerebral. Revista mexicana de engenharia biomédica , 41 (1), 128-140. https://doi.org/10.17488/rmib.41.1.10
Cheng, J., Jin, J., & Wang, X. (2017). Comparison of the BCI Performance between the Semitransparent Face Pattern and the Traditional Face Pattern. Comput Intell Neurosci, 1323985. 10.1155/2017/1323985.
da Silva Pinto, M. A. (2011a). Estudo do potencial evocado visual em regime permanente baseado em LED para interface cérebro máquina. publicado no site da Universidade Federal de Minas Gerais. http://hdl.handle.net/1843/BUOS-8R3HN7
de Melo, G. C. (2018). Algoritmos para reconhecimento de padrões em imagética motora em uma interface cérebro-máquina. publicado no site da Puc-Rio.. https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=34769@1
de Souza, J. R. M., de Aquino Wanderley, D., & da Silva Dória, Ã. (2015). A importância da robótica aplicada à neurociência como ferramenta utilizada na reabilitação de pacientes com deficiências locomotora: uma revisão teórica. Ciências da Engenharia , 3 (1),61. https://sustenere.co/index.php/engineeringsciences/article/view/SPC2318-3055.2015.001.0001
Hermann, J. K., & Capadona J. R. (2019) Understanding the Role of Innate Immunity in the Response to Intracortical Microelectrodes. Crit Rev Biomed Eng,46(4):341-367. doi: 10.1615/CritRevBiomedEng.2018027166.
Hu, K., Jamali, M., Moses, Z. B., Ortega, C. A., Friedman, G. N., Xu, W., & Williams, Z. M. (2018). Decoding unconstrained arm movements in primates using high-density electrocorticography signals for brain-machine interface use. Sci Rep, 8(1):10583. doi: 10.1038/s41598-018-28940-7.
Jochumsen, M., Cremoux, S., Robinault, L., Lauber, J., Arceo, J. C., Navid, M. S., Nedergaard, R. W., Rashid, U., Haavik, H., & Niazi, I. K. (2018). Investigation of Optimal Afferent Feedback Modality for Inducing Neural Plasticity with A Self-Paced Brain-Computer Interface. Sensors (Basel) , 8(11):3761. 10.3390/s18113761.
Kellmeyer, P., Grosse-Wentrup, M., Schulze-Bonhage, A., Ziemann, U., & Ball, T. (2018). Electrophysiological correlates of neurodegeneration in motor and non-motor brain regions in amyotrophic lateral sclerosis—implications for brain–computer interfacing. Journal of Neural Engineering, 15(4). https://iopscience.iop.org/article/10.1088/1741-2552/aabfa5
Loza, C. A., Reddy, C. G., Akella, S., & Príncipe, J. C.(2019). Discrimination of Movement-Related Cortical Potentials Exploiting Unsupervised Learned Representations From ECoGs. Front Neurosci,13:1248. 10.3389/fnins.2019.01248.
Luan, L., Robinson, J. T., Aazhang, B., Chi, T., Yang, K., Li, X., Rathore, H., Singer, A., Yellapantula, S., Fan, Y., Yu, Z., & Xie, C. (2020).Recent Advances in Electrical Neural Interface Engineering: Minimal Invasiveness, Longevity, and Scalability. Neuron. 108(2):302-321. 10.1016/j.neuron.2020.10.011.
Maghsoudi, A., & Shalbaf, A.(2022). Hand Motor Imagery Classification Using Effective Connectivity and Hierarchical Machine Learning in EEG Signals. J Biomed Phys Eng, 2(2):161-170. 10.31661/jbpe.v0i0.1264.
R. Schuh Ânderson, Lima A., de O. Heidrich, R., Mossmann, J., Flores, C., R. Bez, M. (2013) Desenvolvimento de Um Simulador Controlado por Interface Cérebro- Computador Não Invasiva para Treinamento na Utilização de Cadeira de Rodas. RENOTE, 11(3). https://www.seer.ufrgs.br/index.php/renote/article/view/44716
Risso, G., Valle, G., Iberite, F., Strauss, I., Stieglitz, T., Controzzi, M., Clemente, F., Granata, G., Rossini, P. M., Micera, S., & Baud-Bovy, G.(2019) Optimal integration of intraneural somatosensory feedback with visual information: a single-case study. Sci Rep, 9(1):7916. 10.1038/s41598-019-43815-1
Rother, E. T. (2007). Revisão sistemática X revisão narrativa. Scielo, 20(2). https://www.scielo.br/j/ape/a/z7zZ4Z4GwYV6FR7S9FHTByr/#
Schuh, Â. R., Lima, A., de O. Heidrich, R., Mossmann, J., Flores, C., & Bez, M. R. (2013). Desenvolvimento de Um Simulador Controlado por Interface Cérebro- Computador Não Invasiva para Treinamento na Utilização de Cadeira de Rodas. RENOTE, 11(3), 1–9. https://seer.ufrgs.br/index.php/renote/article/view/44716
Sebastián-Romagosa M., Cho, W., Ortner, R., Murovec, N., Von Oertzen, T., Kamada, K., Allison, B. Z., & Guger, C.(2020) Brain Computer Interface Treatment for Motor Rehabilitation of Upper Extremity of Stroke Patients-A Feasibility Study. Front Neurosci,14:591435. 10.3389/fnins.2020.591435
Serruya, M. D., Harris, J. P., Adewole, D. O., Struzyna, L. A., Burrell, J. C., Nemes, A., Petrov, D., Kraft, R. H., Chen, H. I., Wolf, J. A., & Cullen, D. K. (2017)Engineered Axonal Tracts as "Living Electrodes" for Synaptic-Based Modulation of Neural Circuitry. Adv Funct Mater. 28(12):1701183. 10.1002/adfm.201701183.
Souza, J. P. G., Krizan, J., Costa, G. de M., & Fermoseli, A. F. de O. (2015). Interface cérebro – máquina (icm): da transdução do estímulo externo em impulso nervoso a tradução em comandos digitais. Caderno De Graduação - Ciências Biológicas E Da Saúde - UNIT, 3(1), 139–152. https://periodicos.set.edu.br/fitsbiosaude/article/view/2634
Stavisky, S. D., Kao, J. C., Ryu, S. I., & Shenoy, K. V. (2017).Motor Cortical Visuomotor Feedback Activity Is Initially Isolated from Downstream Targets in Output-Null Neural State Space Dimensions. Neuron, 95(1):195-208.e9. 10.1016/j.neuron.2017.05.023.
Tang, J., Liu, Y., Hu, D., & Zhou, Z.(2018). Towards BCI-actuated smart wheelchair system. Biomed Eng Online,17(1):111. 10.1186/s12938-018-0545-x
Twardowski, M. D., Roy, S. H., Li, Z., Contessa, P., De Luca, G., & Kline, J. C. (2018).Motor unit drive: a neural interface for real-time upper limb prosthetic control. J Neural Eng, 6(1):016012. 10.1088/1741-2552/aaeb0f.
Wang, C. H., & Tsai, K. Y.(2022).Optimization of machine learning method combined with brain-computer interface rehabilitation system. J Phys Ther Sci. ,34(5):379-385. 10.1589/jpts.34.379
Wen, D., Fan, Y., Hsu, S. H., Xu, J., Zhou, Y., Tao, J., Lan, X., & Li, F. (2021).Combining brain-computer interface and virtual reality for rehabilitation in neurological diseases: A narrative review. Ann Phys Rehabil Med. 2021 Jan;64(1):101404
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Wanderson Silva Macedo de Sousa; Danielle Costa Lopes; Diego Agripino Chagas Silva; Ana Claudia de Miranda Adad; Jonatas Paulino da Cunha Monteiro Ribeiro; Lyslly Rhanny Soares de Deus ; Gabriela Veiga Macêdo e Araújo; Matheus Sam do Santos Lemos; Tayane de Jesus Bispo; Celina Araújo Veras
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.