Interface cérebro-máquina: avanços na neurociência e o desenvolvimento de bioeletrodos

Autores

DOI:

https://doi.org/10.33448/rsd-v11i12.35046

Palavras-chave:

Neurociências; Neurologia; Reabilitação.

Resumo

Objetivo: Mostrar sobre as atualizações desse campo de pesquisa nos últimos anos. Metodologia: trata-se de uma revisão narrativa que são publicações mais amplas. Foram realizadas buscas na base de dados Pubmed e na Biblioteca Virtual em Saúde (BVS).  Utilizou-se os Descritores em Ciências da Saúde (DeCS) e Medical Subject Headings (MeSH): “Brain-Computer Interfaces”, Nervous System”, “Cerebrum” e  “Neurosciences.” Incluíram-se artigos publicados entre os anos de 2017 e 2022, em português e inglês e que abordassem avanços da interface cérebro-máquina. Resultados: Foram encontrados 17 artigos que se encaixaram nos critérios de inclusão, todos em inglês. As pesquisas demonstraram avanços significativos que podem ser empregados em processos de reabilitação física motora e sensorial. Conclusão: Verificou-se a aplicação de protocolos e métodos diferentes, o que pode ser um empecilho para a replicação de futuros estudos, no entanto também houve avanços no desenvolvimento de eletrodos biocompatíveis a partir de prolongamentos de axônios, que podem diminuir o processo inflamatório em implantes intracorticais e, observou-se, também, o aprimoramento de codificação e decodificação por métodos não invasivos acoplados em diferentes partes do corpo.

Biografia do Autor

Wanderson Silva Macedo de Sousa, Centro Universitário Uninovafapi

Bacharel em fisioterapia e pós graduando em neurociência clínica. 

Danielle Costa Lopes, Universidade Federal do Piauí

Mestranda em farmacologia pela Universidade Federal do Piauí.

Bacharel em Fármacia. 

Diego Agripino Chagas Silva, Centro Universitário Uninovafapi

Acadêmico de medicina 

Ana Claudia de Miranda Adad, Centro Universitário Uninovafapi

Especialista em ergonomia 

Jonatas Paulino da Cunha Monteiro Ribeiro, Universidade Federal do Piauí

Acadêmico de medicina

Lyslly Rhanny Soares de Deus , Centro Universitário Facid | Devry

Bacharel em terapia ocupacional

Gabriela Veiga Macêdo e Araújo, Centro Universitário Uninovafapi

Acadêmica de medicina

Matheus Sam do Santos Lemos, Centro Universitário Uninovafapi

Acadêmico de medicina 

Tayane de Jesus Bispo, Universidade Federal de Sergipe

Acadêmica de medicina

Celina Araújo Veras, Universidade Estadual do Piauí

Bacharel em fisioterapia 

Referências

Araki, T., Uemura, T., Yoshimoto, S., Takemoto, A., Noda, Y., Izumi, S., & Sekitani, T. (2019). Wireless Monitoring Using a Stretchable and Transparent Sensor Sheet Containing Metal Nanowires. Adv Mater , 32(15):e1902684. 10.1002/adma.201902684.

Barria, P., Pino, A., Tovar, N., Gomez-Vargas, D., Baleta, K., Díaz, C. A. R., Múnera, M., & Cifuentes, C. A.(2021). BCI-Based Control for Ankle Exoskeleton T-FLEX: Comparison of Visual and Haptic Stimuli with Stroke Survivors. Sensors (Basel), 21(19):6431. 10.3390/s21196431

Carino-Escobar, R. I., & Cantillo-Negrete, J. (2020). Interfaces cérebro-computador para reabilitação motora de membros superiores de pacientes com acidente vascular cerebral. Revista mexicana de engenharia biomédica , 41 (1), 128-140. https://doi.org/10.17488/rmib.41.1.10

Cheng, J., Jin, J., & Wang, X. (2017). Comparison of the BCI Performance between the Semitransparent Face Pattern and the Traditional Face Pattern. Comput Intell Neurosci, 1323985. 10.1155/2017/1323985.

da Silva Pinto, M. A. (2011a). Estudo do potencial evocado visual em regime permanente baseado em LED para interface cérebro máquina. publicado no site da Universidade Federal de Minas Gerais. http://hdl.handle.net/1843/BUOS-8R3HN7

de Melo, G. C. (2018). Algoritmos para reconhecimento de padrões em imagética motora em uma interface cérebro-máquina. publicado no site da Puc-Rio.. https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=34769@1

de Souza, J. R. M., de Aquino Wanderley, D., & da Silva Dória, Ã. (2015). A importância da robótica aplicada à neurociência como ferramenta utilizada na reabilitação de pacientes com deficiências locomotora: uma revisão teórica. Ciências da Engenharia , 3 (1),61. https://sustenere.co/index.php/engineeringsciences/article/view/SPC2318-3055.2015.001.0001

Hermann, J. K., & Capadona J. R. (2019) Understanding the Role of Innate Immunity in the Response to Intracortical Microelectrodes. Crit Rev Biomed Eng,46(4):341-367. doi: 10.1615/CritRevBiomedEng.2018027166.

Hu, K., Jamali, M., Moses, Z. B., Ortega, C. A., Friedman, G. N., Xu, W., & Williams, Z. M. (2018). Decoding unconstrained arm movements in primates using high-density electrocorticography signals for brain-machine interface use. Sci Rep, 8(1):10583. doi: 10.1038/s41598-018-28940-7.

Jochumsen, M., Cremoux, S., Robinault, L., Lauber, J., Arceo, J. C., Navid, M. S., Nedergaard, R. W., Rashid, U., Haavik, H., & Niazi, I. K. (2018). Investigation of Optimal Afferent Feedback Modality for Inducing Neural Plasticity with A Self-Paced Brain-Computer Interface. Sensors (Basel) , 8(11):3761. 10.3390/s18113761.

Kellmeyer, P., Grosse-Wentrup, M., Schulze-Bonhage, A., Ziemann, U., & Ball, T. (2018). Electrophysiological correlates of neurodegeneration in motor and non-motor brain regions in amyotrophic lateral sclerosis—implications for brain–computer interfacing. Journal of Neural Engineering, 15(4). https://iopscience.iop.org/article/10.1088/1741-2552/aabfa5

Loza, C. A., Reddy, C. G., Akella, S., & Príncipe, J. C.(2019). Discrimination of Movement-Related Cortical Potentials Exploiting Unsupervised Learned Representations From ECoGs. Front Neurosci,13:1248. 10.3389/fnins.2019.01248.

Luan, L., Robinson, J. T., Aazhang, B., Chi, T., Yang, K., Li, X., Rathore, H., Singer, A., Yellapantula, S., Fan, Y., Yu, Z., & Xie, C. (2020).Recent Advances in Electrical Neural Interface Engineering: Minimal Invasiveness, Longevity, and Scalability. Neuron. 108(2):302-321. 10.1016/j.neuron.2020.10.011.

Maghsoudi, A., & Shalbaf, A.(2022). Hand Motor Imagery Classification Using Effective Connectivity and Hierarchical Machine Learning in EEG Signals. J Biomed Phys Eng, 2(2):161-170. 10.31661/jbpe.v0i0.1264.

R. Schuh Ânderson, Lima A., de O. Heidrich, R., Mossmann, J., Flores, C., R. Bez, M. (2013) Desenvolvimento de Um Simulador Controlado por Interface Cérebro- Computador Não Invasiva para Treinamento na Utilização de Cadeira de Rodas. RENOTE, 11(3). https://www.seer.ufrgs.br/index.php/renote/article/view/44716

Risso, G., Valle, G., Iberite, F., Strauss, I., Stieglitz, T., Controzzi, M., Clemente, F., Granata, G., Rossini, P. M., Micera, S., & Baud-Bovy, G.(2019) Optimal integration of intraneural somatosensory feedback with visual information: a single-case study. Sci Rep, 9(1):7916. 10.1038/s41598-019-43815-1

Rother, E. T. (2007). Revisão sistemática X revisão narrativa. Scielo, 20(2). https://www.scielo.br/j/ape/a/z7zZ4Z4GwYV6FR7S9FHTByr/#

Schuh, Â. R., Lima, A., de O. Heidrich, R., Mossmann, J., Flores, C., & Bez, M. R. (2013). Desenvolvimento de Um Simulador Controlado por Interface Cérebro- Computador Não Invasiva para Treinamento na Utilização de Cadeira de Rodas. RENOTE, 11(3), 1–9. https://seer.ufrgs.br/index.php/renote/article/view/44716

Sebastián-Romagosa M., Cho, W., Ortner, R., Murovec, N., Von Oertzen, T., Kamada, K., Allison, B. Z., & Guger, C.(2020) Brain Computer Interface Treatment for Motor Rehabilitation of Upper Extremity of Stroke Patients-A Feasibility Study. Front Neurosci,14:591435. 10.3389/fnins.2020.591435

Serruya, M. D., Harris, J. P., Adewole, D. O., Struzyna, L. A., Burrell, J. C., Nemes, A., Petrov, D., Kraft, R. H., Chen, H. I., Wolf, J. A., & Cullen, D. K. (2017)Engineered Axonal Tracts as "Living Electrodes" for Synaptic-Based Modulation of Neural Circuitry. Adv Funct Mater. 28(12):1701183. 10.1002/adfm.201701183.

Souza, J. P. G., Krizan, J., Costa, G. de M., & Fermoseli, A. F. de O. (2015). Interface cérebro – máquina (icm): da transdução do estímulo externo em impulso nervoso a tradução em comandos digitais. Caderno De Graduação - Ciências Biológicas E Da Saúde - UNIT, 3(1), 139–152. https://periodicos.set.edu.br/fitsbiosaude/article/view/2634

Stavisky, S. D., Kao, J. C., Ryu, S. I., & Shenoy, K. V. (2017).Motor Cortical Visuomotor Feedback Activity Is Initially Isolated from Downstream Targets in Output-Null Neural State Space Dimensions. Neuron, 95(1):195-208.e9. 10.1016/j.neuron.2017.05.023.

Tang, J., Liu, Y., Hu, D., & Zhou, Z.(2018). Towards BCI-actuated smart wheelchair system. Biomed Eng Online,17(1):111. 10.1186/s12938-018-0545-x

Twardowski, M. D., Roy, S. H., Li, Z., Contessa, P., De Luca, G., & Kline, J. C. (2018).Motor unit drive: a neural interface for real-time upper limb prosthetic control. J Neural Eng, 6(1):016012. 10.1088/1741-2552/aaeb0f.

Wang, C. H., & Tsai, K. Y.(2022).Optimization of machine learning method combined with brain-computer interface rehabilitation system. J Phys Ther Sci. ,34(5):379-385. 10.1589/jpts.34.379

Wen, D., Fan, Y., Hsu, S. H., Xu, J., Zhou, Y., Tao, J., Lan, X., & Li, F. (2021).Combining brain-computer interface and virtual reality for rehabilitation in neurological diseases: A narrative review. Ann Phys Rehabil Med. 2021 Jan;64(1):101404

Downloads

Publicado

22/09/2022

Como Citar

SOUSA, W. S. M. de .; LOPES, D. C. .; SILVA, D. A. C. .; ADAD, A. C. de M. .; RIBEIRO, J. P. da C. M. .; DEUS , L. R. S. de .; ARAÚJO, G. V. M. e .; LEMOS, M. S. do S. .; BISPO, T. de J. .; VERAS, C. A. . Interface cérebro-máquina: avanços na neurociência e o desenvolvimento de bioeletrodos. Research, Society and Development, [S. l.], v. 11, n. 12, p. e489111235046, 2022. DOI: 10.33448/rsd-v11i12.35046. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35046. Acesso em: 26 nov. 2024.

Edição

Seção

Ciências da Saúde