3D printing of anatomical parts as educational tools and aid in clinical practice

Authors

DOI:

https://doi.org/10.33448/rsd-v11i13.35234

Keywords:

Anatomy; Bioprinting; Education; Innovation; Teaching.

Abstract

The method traditionally applied for teaching-learning in the anatomy discipline can be enhanced with the use of three-dimensional (3D) printing technology that contributes and improves the quality of learning, offering the student an extensive and replicable database with rich details. in three-dimensional format. Bioprinting also plays an important role in clinical practice, such as in the development of prostheses and the study of anatomical variations. Thus, the present work analyzed the importance of 3D printing in the teaching-learning process and evaluated its application in clinical practice. A literature review was carried out, based on studies published between 2016 and 2022 relevant to the terms (DeCS/MeSH) “3D Printing” and “Anatomy”. Regarding the applicability of bioprinting in anatomy, anatomical models can be used for educational purposes and medical training. As for clinical practice, there are several applications in medicine, among them anatomical models for preoperative planning, medical investigation, and implants. We emphasize the importance of developing new methodologies and materials from the production of models made by digital modeling processes and making this knowledge available to students and doctors, directly benefiting the population.

References

Araujo, M. C. E., Duarte, M. M. S., Louredo, L. M., Louredo, J. M., & Arruda, J. T. (2021). Contribuições da engenharia reversa e produção de modelos 3D para o ensino médico. Research, Society and Development, 10(11), e385101119692. https://doi.org/10.33448/rsd-v10i11.19692

Balestrini, C., & Campo-Celaya, T. (2016). With the advent of domestic 3-dimensional (3D) printers and their associated reduced cost, is it now time for every medical school to have their own 3D printer? Medical teacher, 38(3), 312–313. https://doi.org/10.3109/0142159X.2015.1060305

Bento, R. F., Rocha, B. B. A., Freitas, E. L., & Balsalobre, F. A. (2019). Otobone®: Three-dimensional printed Temporal Bone Biomodel for Simulation of Surgical Procedures. International Archives of Otorhinolaryngology, 23(04), 451-454. https://doi.org/10.1055/s-0039-1688924

César-Juáreza, Á. A., Olivos-Mezad, A., Landa-Solíse, C., Cárdenas-Soriaf, V. H., Silva-Bermúdeze, P. S., Ahedog, C. S., Díazh, B. O., & Ibarra-Ponce de León, J. C. (2018). Uso y aplicación de la tecnología de impresión y bioimpresión 3D en medicina. Novedades en Medicina, 61(6), 43-51. http//dx.doi.org/10.22201.fm.24484865e.2018.61.6.07

Duarte, M. M. S., Araujo, M. C. E., Louredo, L. M., Louredo, J. M., & Arruda, J. T. (2021). Aplicabilidades da técnica de fotogrametria no ensino de Anatomia Humana. Research, Society and Development, 10(11), e51101119328. https://doi.org/10.33448/rsd-v10i11.19328

Edelmers, E., Kazoka, D., & Pilmane, M. (2021). Creation of Anatomically Correct and Optimized for 3D Printing Human Bones Models. Applied System Innovation, 4(3), 67. https://doi.org/10.3390/asi4030067

Henrique, L. (2018). Confecção de modelos vertebrais por impressão 3D para uso didático em aulas de anatomia. Trabalho de Conclusão de Curso, Instituto Federal de Santa Catarina, Campus Florianópolis, Curso superior em Tecnólogo em Radiologia. 47p.

Isaacson, A., Swioklo, S., & Connon, C. J. (2018). 3D bioprinting of a corneal stroma equivalent. Experimental eye research, 173, 188–193. https://doi.org/10.1016/j.exer.2018.05.010

Kim, J. H., Seol, Y. J., Ko, I. K., Kang, H-W., Lee, Y. K., Yoo, J. J., Atala, A., & Lee, S. J. (2018). 3D Bioprinted Human Skeletal Muscle Constructs for Muscle Function Restoration. Scientific Reports, 8, 12307. https://doi.org/10.1038/s41598-018-29968-5

Koche, J. C. (2011). Fundamentos de metodologia científica. Rio de Janeiro, Petrópolis: Vozes.

Louredo, L. M., Duarte, M. M. S., Araújo, M. C. E., Louredo, J. M., & Arruda, J. T. (2021). Uso de prototipagem rápida ou manufatura aditiva para estudos de casos clínicos e planejamento de técnica cirúrgica utilizando modelos 3D. Research, Society and Development, 10(12), e336101220403. https://doi.org/10.33448/rsd-v10i12.20403

Manero, A., Smith, P., Koontz, A., Dombrowski, M., Sparkman, J., Courbin, D., & Chi, A. (2020). Leveraging 3D Printing Capacity in Times of Crisis: Recommendations for COVID-19 Distributed Manufacturing for Medical Equipment Rapid Response. International journal of environmental research and public health, 17(13), 4634. https://doi.org/10.3390/ijerph17134634

Matozinhos, I. P., Madureira, A. A. C., Silva, G. F., Madeira, G. C. C., Oliveira, I. F. A., & Corrêa, C. R. (2017). Impressão 3d: inovações no campo da medicina. Revista Interdisciplinar Ciências Médicas, 1(1), 143-162.

Oliveira, N. A., Roballo, K. C. S., Lisboa Neto, A. F. S., Sandini, T. M., Santos, A. C., Martins, D. S., & Ambrosio, C. E. (2017). Bioimpressão e produção de mini-órgãos com células tronco. Pesquisa Veterinária Brasileira, 37(09), 1032-1039. https://doi.org/10.1590/S0100-736X2017000900020

Prim, G. S., Leal, G. Z., Romeiro, N. C., Campos, D. V., & Vieira, M. L. H. (2018). Digitalização 3D de ossos humanos para ferramentas de estudo em anatomia. Anais do 13º Congresso Pesquisa e Desenvolvimento em Design. São Paulo: Blucher, 2019. DOI: 10.5151/ped2018-2.3_ACO_07

Romeiro, N. C., Salomão, A., Prim, G. S., & Vieira, M. L. H. (2019). Impressão 3D de peças anatômicas escaneadas como ferramenta de educação. Anais do 9º Congresso Internacional de Design da Informação. Anais do 9º Congresso Nacional de Iniciação Científica em Design da Informação. Sociedade Brasileira de Design da Informação – SBDI Belo Horizonte. Brasil, 1936-1944.

Signor, A. C., & Basmaji, P. (2020). Nova estratégia de Bioimpressão Nanoskin 3d no tratamento de feridas: um futuro brilhante pela frente. Revista Ibero-Americana de Podologia, 2(1), 146. DOI: https://doi.org/10.36271/iajp.v2i1.26.

Silva, Y. A., Silva Júnior, E. X., Silva, B. N., Rodrigues, G. P., Sousa, G. O., Novaes, W. A., Shiosaki, R. K., Silva, T. F. A., & Schwingel, P. A. (2017). Confecção de modelo neuroanatômico funcional como alternativa de ensino e aprendizagem para a disciplina de neuroanatomia. Revista Ibero-Americana de Estudos em Educação, 12(3), 1674–1688. https://doi.org/10.21723/riaee.v12.n.3.2017.8502

Werner Júnior, H., Santos, J. L., Belmonte, S., Ribeiro, G., Daltro, P., Gasparetto, E. L., & Marchiori, E. (2016). Aplicabilidade da tecnologia tridimensional na medicina fetal. Radiologia Brasileira, 49(5), 281-287. http://dx.doi.org/10.1590/0100-3984.2015.0100

Wu, A. M., Wang, K., Wang, J. S., Chen, C. H., Yang, X. D., Ni, W. F., & Hu, Y. Z. (2018). The addition of 3D printed models to enhance the teaching and learning of bone spatial anatomy and fractures for undergraduate students: a randomized controlled study. Annals of translational medicine, 6(20), 403. https://doi.org/10.21037/atm.2018.09.59

Zamborsky, R., Kilian, M., Jacko, P., Bernadic, M., & Hudak, R. (2019). Perspectives of 3D printing technology in orthopaedic surgery. Bratislavske lekarske listy, 120(7), 498–504. https://doi.org/10.4149/BLL_2019_079

Zhang, Y. S., Arneri, A., Bersini, S., Shin, S. R., Zhu, K., Goli-Malekabadi, Z., Aleman, J., Colosi, C., Busignani, F., Dell'Erba, V., Bishop, C., Shupe, T., Demarchi, D., Moretti, M., Rasponi, M., Dokmeci, M. R., Atala, A., & Khademhosseini, A. (2016). Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 110, 45–59. https://doi.org/10.1016/j.biomaterials.2016.09.003

Published

06/10/2022

How to Cite

GARCIA, T. R. .; MACEDO, R. M. .; VAZ, M. H. V. .; BORGES, G. H. I. .; ZENDRON, I. M. .; ARRUDA, J. T. 3D printing of anatomical parts as educational tools and aid in clinical practice. Research, Society and Development, [S. l.], v. 11, n. 13, p. e248111335234, 2022. DOI: 10.33448/rsd-v11i13.35234. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35234. Acesso em: 2 jan. 2025.

Issue

Section

Health Sciences