Mathematical modeling of drying kinetics and hygroscopic balance of Cymbopogon flexuosus leaves

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.3594

Keywords:

East indian lemongrass; Medicinal plant; Agricultural products processing.

Abstract

The Cymbopogon genus is widely studied for its medicinal characteristics, which are recognized and used worldwide. However, there is a need to study the drying kinetics, hygroscopic balance and the color change of Cymbopogon flexuosus leaves by varying the drying temperature. The objective of this work was to study the drying kinetics of Indian grass leaves, to adjust a model among those existing in the literature that best represents the behavior of the sorption isotherm, as well as to analyze the effect of the drying process on the color of the leaves. The Indian grass leaves were cut to a length of 0.2 m and submitted to drying air temperatures of 35, 45, 55 and 70 ºC in a fixed layer mechanical dryer. For the study of the hygroscopic phenomenon, temperatures of 20, 30, 55 and 70 ºC were used with water activities between 10.75 and 85.11%. The model that best represented the drying curves was the Midilli model with an R² of 0.99. The model that best represented the hygroscopic balance curve of Indian grass leaves was that of Modified GAB with R² of 0.94. As the drying air temperature increased, the samples darkened at temperatures above 45 ºC.

References

Abreu, G. F. et al. (2015) Alterações na coloração de grãos de café em função das operações pós-colheita. Coffe Science, 10(4), 429-436.

Alara, O. R., Abdurahman, N. H. & Olalere, O. A. (2019) Mathematical modelling and morphological properties of thin layer oven drying of Vernonia amygdalina leaves. Journal of the Saudi Society of Agricultural Sciences, 18(3), 309-315.

Barbosa, K. F. et al. (2016) Desorption isotherms and isosteric heat of'cajuzinho-do-cerrado'achenes. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(5), 481-486.

Castro, A. M.; Mayorga, E. Y.; Moreno, F. L. (2019) Mathematical modelling of convective drying of feijoa (Acca sellowiana Berg) slices. Journal of food engineering, 252, 44-52.

Corrêa Filho, L. C. et al. (2018) Post-harvest of parsley leaves (Petroselinum crispum): Mathematical modelling of drying and sorption processes. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(2), 131-136.

Corrêa, P .C.; Machado, P. F.; Andrade, E. T. (2001) Cinética de secagem e qualidade de grãos de milho-pipoca. Ciência e Agrotecnologia, 25(1), 134-142.

Da, H., Gu, X. J. & Xiao, P. G. (2015) Medicinal plants: chemistry, biology and omics. Cambridge: Woodhead Publishing.

Dinçer, İ. & Zamfirescu, C. (2016) Drying phenomena: theory and applications. West Sussex: John Wiley & Sons.

Dorneles, L. N. S. et al. (2019) Effect of air temperature and velocity on drying kinetics and essential oil composition of Piper umbellatum L. leaves. Industrial Crops and Products, 142, 111846.

Garcia, J. N. et al. (2019). Cinética de secagem de capim-limão (Cymbopogon citratus (DC) Stapf). Global Science And Technology, 12(2).

Goneli, A. L. D. et al. (2014) Modelagem matemática e difusividade efetiva de folhas de aroeira durante a secagem. Pesquisa agropecuária tropical, 44(1), 56-64.

Greenspan, L. et al. (1977) Humidity fixed points of binary saturated aqueous solutions. Journal of research of the national bureau of standards, 81(1), 89-96.

Han, X. & Parker, T. L. (2017) Lemongrass (Cymbopogon flexuosus) essential oil demonstrated anti-inflammatory effect in pre-inflamed human dermal fibroblasts. Biochimie open, 4, 107-111.

Instituto Adolfo Lutz (2005) Métodos físico-químicos para análise de alimentos: normas analíticas do Instituto Adolfo Lutz. 4ª ed. Brasília (DF): ANVISA, 1018pp.

Keneni, Y. G.; Hvoslef-Eide, Ak Trine; Marchetti, J. M. (2019) Mathematical modelling of the drying kinetics of Jatropha curcas L. seeds. Industrial crops and products, 132, 12-20.

Labuza, T. P.; Altunakar, B. (2007) Water Activity Prediction, and Moisture Sorption Isotherms. In: Barbosa-Cánovas, G. V.; Fontana Júnior, A. J; Schmidt, S. J.; Labuza, T. P. Water activity in foods: Fundamentals and Applications. Ames: Blackwell Publishing Professional, Cap. 05, p. 109-154.

Leite, D. D. F. et al. (2017) Modelagem matemática da cinética de secagem da casca do abacaxi. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 12(4), 769-774.

Liu, Y. et al. (2017) Hot air drying of purple-fleshed sweet potato with contact ultrasound assistance. Drying Technology, 35(5), 564-576.

Madamba, P. S.; Driscoll, R. H.; Buckle, K. A. (1996) The thin-layer drying characteristics of garlic slices. Journal of food engineering, 29(1), 75-97.

Martinazzo, A. P. et al. (2010) Modelagem matemática e parâmetros qualitativos da secagem de folhas de capim-limão [Cymbopogon citratus (DC.) Stapf]. Revista Brasileira de Plantas Medicinais, 12(4), 488-498.

Mathai, A. M.; Haubold, H. J. (2017) Probability and Statistics: A Course for Physicists and Engineers. Walter de Gruyter GmbH & Co KG.

Mghazli, S. et al. (2017) Drying characteristics and kinetics solar drying of Moroccan rosemary leaves. Renewable Energy, 108, 303-310.

Monteiro, R. L.; Carciofi, B. A. M.; Laurindo, J. B. (2016) A microwave multi-flash drying process for producing crispy bananas. Journal of Food Engineering, 178, 1-11.

Moura, R. L.; De Figueirêdo, R. M. F.; De Melo Queiroz, A. J. (2014) Processamento e caracterização físico-química de néctar goiaba-tomate. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 9(3), 68-74.

Pereira, A.S. et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_ Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 20 Abril 2020.

Santos, D. C. et al. (2019) Drying kinetics and thermodynamic properties of patawa pulp (Oenocarpus bataua Mart.). Brazilian Journal of Food Technology, 22.

Silva Filho, E. D. et al. (2016) Cinética de secagem em camada de espuma da polpa da manga cv. Haden. Comunicata Scientiae, 7(3), 354-361.

Silva, L. A. et al. (2015) Cinética de secagem e difusividade efetiva em folhas de jenipapo (Genipa americana L.). Revista Brasileira de Plantas Medicinais, 17(4), 953-963.

Silva, R. B. et al. (2016) Estudo da cinética de secagem de polpa de carambola. Revista Brasileira de Tecnologia Agroindustrial, 10(2), 2069-2080.

Simha, P.; Mathew, M.; Ganesapillai, M. (2016) Empirical modeling of drying kinetics and microwave assisted extraction of bioactive compounds from Adathoda vasica and Cymbopogon citratus. Alexandria Engineering Journal, 55(1), 141-150.

Sousa, K. S. M. et al. (2018) Estudo da cinética de secagem do coentro sob ação da radiação direta e difusa. Nucleus, 15(2), 423-432.

Teixeira, L. P. ; Andrade, E. T.; Da Silva, P. G. L. (2012) Determinação do equilíbrio higroscópico e do calor isostérico da polpa e da casca do abacaxi. Engevista, 14(2).

Udomkun, P. et al. (2015) Single layer drying kinetics of papaya amidst vertical and horizontal airflow. LWT-Food Science and Technology, 64(1), 67-73.

Zabalaga, R. F.; La Fuente, C. I.A.; Tadini, C. C. (2016) Experimental determination of thermophysical properties of unripe banana slices (Musa cavendishii) during convective drying. Journal of food engineering, 187, 62-69.

Published

25/04/2020

How to Cite

OLIVEIRA, F. da S. de; ANDRADE, E. T. de; RIOS, P. de A.; MOREIRA, K. S.; SALVIO, L. G. A. Mathematical modeling of drying kinetics and hygroscopic balance of Cymbopogon flexuosus leaves. Research, Society and Development, [S. l.], v. 9, n. 7, p. e10973594, 2020. DOI: 10.33448/rsd-v9i7.3594. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/3594. Acesso em: 1 jan. 2025.

Issue

Section

Agrarian and Biological Sciences