Analysis of biomolecular changes caused by exposure to the drug diclofenac sodium in fish of the Brycon Opalinus species using Fourier transformed infrared spectroscopy (FTIR)

Authors

DOI:

https://doi.org/10.33448/rsd-v11i14.36080

Keywords:

Infrared Spectroscopy; Brycon opalinus; Ecotoxicity; Drugs; Environment.

Abstract

The increase in the consumption of medicines around the world has generated several studies on the impacts caused by the inappropriate disposal of waste containing the active ingredients of medicines in the environment. After being ingested, these drugs are excreted in the form of other compounds in domestic sewage, many of which are still persistent in the environment and generate physiological changes in aquatic organisms. Due to population growth and excessive consumption, the anti-inflammatory known as diclofenac sodium is among the main drugs found in Brazilian surface waters, in concentrations in the range of micrograms per liter (µg.L-1). This work aimed to study the biomolecular changes that diclofenac can cause in fish of the Brycon opalinus species, using the Fourier Transform Infrared Spectroscopy (FTIR) technique coupled with chemometric methods, principal component analysis (PCA) and hierarchical cluster analysis (HCA). Two different concentrations of diclofenac sodium plus the control were studied. The organ selected for this study were the gills. PCA and HCA results showed discrimination between the control and treated spectra. The quantitative analysis, by calculating the areas of the bands of lipids, proteins and carbohydrates, showed changes in these biomolecules, with proteins and carbohydrates being more sensitive to exposure to diclofenac. The results of the deconvolution and curve fitting showed a decrease in the disordered structure and an increase in β sheet of the protein secondary structure for the exposure of 4.4 µg.L-1 of diclofenac.

References

Abdel-Gawad, F. K., Osman, O., Bassem, S. M., Nassar, H. F., Temraz, T. A., Elhaes, H., & Ibrahim, M. (2018). Spectroscopic analyses and genotoxicity of dioxins in the aquatic environment of Alexandria. Marine pollution bulletin, 127, 618-625. https://doi.org/10.1016/j.marpolbul.2017.12.056

Aguiar, A. P., & Machado, K. M. G. (2022). Biodegradação do Diclofenaco: Uma Revisão. Leopoldianum, 48(134).

Américo-Pinheiro, J. H. P., Isique, W. D., Torres, N. H., Machado, A. A., Carvalho, S. L. D., Valério, W. V., & Ferreira, L. F. R. (2017). Ocorrência de diclofenaco e naproxeno em água superficial no município de Três Lagoas (MS) e a influência da temperatura da água na detecção desses anti-inflamatórios. Engenharia Sanitaria e Ambiental, 22, 429-435. https://doi.org/10.1590/S1413-41522017128719

Ashfaq, M., Noor, N., Saif‐Ur‐Rehman, M., Sun, Q., Mustafa, G., Faizan Nazar, M., & Yu, C. P. (2017). Determination of commonly used pharmaceuticals in hospital waste of Pakistan and evaluation of their ecological risk assessment. CLEAN–Soil, Air, Water, 45(6), 1500392. https://doi.org/10.1002/clen.201500392

Ashfaq, M., Khan, K. N., Rehman, M. S. U., Mustafa, G., Nazar, M. F., Sun, Q., ... & Yu, C. P. (2017). Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in Pakistan. Ecotoxicology and environmental safety, 136, 31-39. https://doi.org/10.1016/j.ecoenv.2016.10.029

Banhara, V. F. (2013). Avaliação ambiental dos efeitos causados pelos compostos farmacêuticos Diclofenaco e 17 α-Etinilestradiol através do teste de Ecotoxicidade em peixes da espécie Danio rerio. [Trabalho de conclusão de curso]. Universidade do Vale do Paraíba (UNIVAP).

de Almeida Barbosa, L. C. (2007). Espectroscopia no infravermelho: na caracterização de compostos orgânicos. Ed. UFV.

Barth, A. (2007). Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(9), 1073-1101. https://doi.org/10.1016/j.bbabio.2007.06.004

Batista, J. R., Rodrigues, G. Z. P., Rosa Neto, E. D., Gehlen, G., & da Silva, L. B. (2018). Analysis of histopathological abnormalities in the gills of Astyanax jacuhiensis (Characidae) for assessment of water quality in the Ijuí River, southern Brazil. Acta Toxicológica Argentina, 26(3), 99-103.

Bisognin, R. P., Wolff, D. B., & Carissimi, E. (2018). Revisão sobre fármacos no ambiente. Revista DAE, 66(210), 78-95. https://doi.org/10.4322/dae.2018.009

Bound, J. P., & Voulvoulis, N. (2005). Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United Kingdom. Environmental health perspectives, 113(12), 1705-1711. https://doi.org/10.1289/ehp.8315

Bro, R., & Smilde, A. K. (2014). Principal component analysis. analytical methods, v. 6.

Castro, J. S., França, C. L., Fernandes, J. F. F., Silva, J. S., Carvalho-Neta, R. N. F., & Teixeira, E. G. (2018). Biomarcadores histológicos em brânquias de Sciades herzbergii (Siluriformes, Ariidae) capturados no complexo Estuarino de São Marcos, Maranhão. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 70, 410-418. https://doi.org/10.1590/1678-4162-9906

da Silva Escher, M. A., Américo-Pinheiro, J. H. P., Torres, N. H., & Ferreira, L. F. R. (2019). A problemática ambiental da contaminação dos recursos hídricos por fármacos. Brazilian Journal of Environmental Sciences (Online), (51), 141-148. https://doi.org/10.5327/Z2176-947820190469

de Magalhães, C. R., Carrilho, R., Schrama, D., Cerqueira, M., Rosa da Costa, A. M., & Rodrigues, P. M. (2020). Mid-infrared spectroscopic screening of metabolic alterations in stress-exposed gilthead seabream (Sparus aurata). Scientific reports, 10(1), 1-9. https://doi.org/10.1038/s41598-020-73338-z

Derakhsh, M. P., Moradi, M. A., Sharifpour, I., & Jamili, S. (2020). Toxic effects of diclofenac on gills, liver and kidney of Cyprinus carpio (Linnaeus, 1758). Iranian Journal of Fisheries Sciences, 19(2), 735-747. https://doi.org/10.22092/ijfs.2018.119517.

dos Santos Grasel, F., Ferrão, M. F., & Wolf, C. R. (2016). Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 153, 94-101. https://doi.org/10.1016/j.saa.2015.08.020

Evariste, L., Barret, M., Mottier, A., Mouchet, F., Gauthier, L., & Pinelli, E. (2019). Gut microbiota of aquatic organisms: a key endpoint for ecotoxicological studies. Environmental pollution, 248, 989-999. https://doi.org/10.1016/j.envpol.2019.02.101

Ghelfi, A., Ribas, J. L. C., Guiloski, I. C., Bettim, F. L., Piancini, L. D. S., Cestari, M. M., ... & Silva de Assis, H. C. (2016). Evaluation of biochemical, genetic and hematological biomarkers in a commercial catfish Rhamdia quelen exposed to diclofenac. Bulletin of environmental contamination and toxicology, 96(1), 49-54. https://doi.org/10.1007/s00128-015-1693-3

Gomiero, L. M., & Braga, F. M. D. S. (2007). Reproduction of Pirapitinga do Sul (Brycon opalinus Cuvier, 1819) in the Parque Estadual da Serra do Mar-Núcleo Santa Virgínia, São Paulo, Brazil. Brazilian Journal of Biology, 67, 541-549. https://doi.org/10.1590/S1519-69842007000300021

Gonzalez, R. J., Patrick, M. L., Duarte, R. M., Casciato, A., Thackeray, J., Day, N., & Val, A. L. (2021). Exposure to pH 3.5 water has no effect on the gills of the Amazonian tambaqui (Colossoma macropomum). Journal of Comparative Physiology B, 191(3), 493-502. https://doi.org/10.1007/s00360-021-01349-x

Guiloski, I. C., Piancini, L. D. S., Dagostim, A. C., de Morais Calado, S. L., Fávaro, L. F., Boschen, S. L., ... & de Assis, H. C. S. (2017). Effects of environmentally relevant concentrations of the anti-inflammatory drug diclofenac in freshwater fish Rhamdia quelen. Ecotoxicology and environmental safety, 139, 291-300. https://doi.org/10.1016/j.ecoenv.2017.01.053

Hanif, H., Waseem, A., Kali, S., Qureshi, N. A., Majid, M., Iqbal, M., ... & Zafar, M. I. (2020). Environmental risk assessment of diclofenac residues in surface waters and wastewater: a hidden global threat to aquatic ecosystem. Environmental monitoring and assessment, 192(4), 1-12. https://doi.org/10.1007/s10661-020-8151-3

Hilsdorf, A. W. S., & Petrere Jr, M. (2002). Conservação de peixes na bacia do rio Paraíba do Sul. Ciência Hoje, 30(180), 62-65.

Hu, L. X., Ying, G. G., Chen, X. W., Huang, G. Y., Liu, Y. S., Jiang, Y. X., ... & Martin, F. L. (2017). Fourier‐transform infrared spectroscopy as a novel approach to providing effect‐based endpoints in duckweed toxicity testing. Environmental Toxicology and Chemistry, 36(2), 346-353. https://doi.org/10.1002/etc.3534

IBGE - Instituto Brasileiro De Geografia e Estatística. Pesquisa Nacional de Saneamento Básico (PNSB). 2019. Disponível em: https://www.ibge.gov.br/estatisticas/multidominio/meio-ambiente/9073-pesquisa-nacional-de-saneamento-basico.html?t=destaques

Kramer, R. D., Mizukawa, A., Ide, A. H., Marcante, L. O., Santos, M. D., & Azevedo, J. D. (2015). Determinação de anti-inflamatórios na água e sedimento e suas relações com a qualidade da água na bacia do Alto Iguaçu, Curitiba-PR. Revista Brasileira de Recursos Hídricos, 20(3), 657-667.

Kumar, M. M., Kumari, S. B., Kavitha, E., Velmurugan, B., & Karthikeyan, S. (2020). Spectral profile index changes as biomarker of toxicity in Catla catla (Hamilton, 1822) edible fish studied using FTIR and principle component analysis. SN Applied Sciences, 2(7), 1-10. https://doi.org/10.1007/s42452-020-3001-z

Lonappan, L., Brar, S. K., Das, R. K., Verma, M., & Surampalli, R. Y. (2016). Diclofenac and its transformation products: environmental occurrence and toxicity-a review. Environment International, 96, 127-138. https://doi.org/10.1016/j.envint.2016.09.014

Lunardelli, B., Cabral, M. T., Vieira, C. E., Oliveira, L. F., Risso, W. E., Meletti, P. C., & Martinez, C. B. (2018). Chromium accumulation and biomarker responses in the Neotropical fish Prochilodus lineatus caged in a river under the influence of tannery activities. Ecotoxicology and environmental safety, 153, 188-194. https://doi.org/10.1016/j.ecoenv.2018.02.023

Matouke, M. M. (2019). FTIR study of the binary effect of titanium dioxide nanoparticles (nTiO2) and copper (Cu2+) on the biochemical constituents of liver tissues of catfish (Clarias gariepinus). Toxicology reports, 6, 1061-1070. https://doi.org/10.1016/j.toxrep.2019.10.002

Meletti, P. C., Rocha, O., & Martinez, C. D. R. (2003). Avaliação da degradação ambiental na bacia do rio Mogi-Guaçu por meio de testes de toxidade com sedimento e de análises histopatológicas em peixes. Limnologia Fluvial: um estudo no rio Mogi-Guaçú. São Paulo: SÃO CARLOS, 149-180.

Miranda, A. C., dos Prazeres, K. C., Klepa, R. B., Franco, M. A. C., Silva Filho, S. C., & Santana, J. C. C. (2018). AVALIAÇÃO DO CONHECIMENTO DOS CONSUMIDORES DE DUAS CIDADES DA GRANDE SP, BRASIL, SOBRE OS IMPACTOS CAUSADOS PELO DESCARTE INCORRETO DE MEDICAMENTOS. Interciencia, 43(8), 580-584. Disponível em: https://www.redalyc.org/articulo.oa?id=33957744007

Movasaghi, Z., Rehman, S., & ur Rehman, D. I. (2008). Fourier transform infrared (FTIR) spectroscopy of biological tissues. Applied Spectroscopy Reviews, 43(2), 134-179. https://doi.org/10.1080/05704920701829043

Pereira, L. A. L., Amanajás, R. D., de Oliveira, A. M., da Silva, M. D. N. P., & Val, A. L. (2021). Health of the Amazonian fish tambaqui (Colossoma macropomum): Effects of prolonged photoperiod and high temperature. Aquaculture, 541, 736836. https://doi.org/10.1016/j.aquaculture.2021.736836

Pan, G. (2019). Roles of hepatic drug transporters in drug disposition and liver toxicity. Drug Transporters in Drug Disposition, Effects and Toxicity, 293-340. https://doi.org/10.1007/978-981-13-7647-4_6

Patel, M., Taskar, K. S., & Zamek‐Gliszczynski, M. J. (2016). Importance of hepatic transporters in clinical disposition of drugs and their metabolites. The Journal of Clinical Pharmacology, 56, S23-S39. https://doi.org/10.1002/jcph.671

Pereira, N. J., Santos, M. M. dos, Maião, J. P. L. da S., Campos, J. S. de P., Silva, N. D. da, Mendes, D. C. da S., Lenz, T. de M., & Santos, D. M. S. (2020). Biomarcadores histológicos em brânquias de peixes na avaliação da contaminação ambiental do Rio Mearim, Nordeste brasileiro / Histological biomarkers in fish gills in the assessment of environmental contamination of the Mearim river, Northeastern Brazil. Brazilian Journal of Development, 6(9), 68063–68079. https://doi.org/10.34117/bjdv6n9-297

Salgado, L. D., Marques, A. E. M. L., Kramer, R. D., de Oliveira, F. G., Moretto, S. L., de Lima, B. A., ... & de Assis, H. C. S. (2019). Integrated assessment of sediment contaminant levels and biological responses in sentinel fish species Atherinella brasiliensis from a sub-tropical estuary in south Atlantic. Chemosphere, 219, 15-27. https://doi.org/10.1016/j.chemosphere.2018.11.204

Salgado, L. D., Marques, A. E. M. L., Kramer, R. D., de Oliveira, F. G., Moretto, S. L., de Lima, B. A., ... & de Assis, H. C. S. (2021). Sediment contamination and toxic effects on Violet Goby fish (Gobioides broussonnetii-Gobiidae) from a marine protected area in South Atlantic. Environmental Research, 195, 110308. https://doi.org/10.1016/j.envres.2020.110308

Santos, M. E. S., Horký, P., Grabicová, K., Hubená, P., Slavík, O., Grabic, R., ... & Randák, T. (2021). Traces of tramadol in water impact behaviour in a native European fish. Ecotoxicology and Environmental Safety, 212, 111999. https://doi.org/10.1016/j.ecoenv.2021.111999

Shane, B. S. (2019). Introduction to ecotoxicology. In Basic Environmental Toxicology (pp. 3-10). CRC Press.

Simonato, J. D., Mela, M., Doria, H. B., Guiloski, I. C., Randi, M. A., Carvalho, P. S., ... & Martinez, C. B. (2016). Biomarkers of waterborne copper exposure in the Neotropical fish Prochilodus lineatus. Aquatic toxicology, 170, 31-41. https://doi.org/10.1016/j.aquatox.2015.11.012

Sousa, P. V. A. de, Sousa, M. da S., Sousa, G. da S., Souza, O. G. B. de, & Santos, T. de S. (2020). Effects of drug disposal on the environment. Research, Society and Development, 9(7), e198973868. https://doi.org/10.33448/rsd-v9i7.3868

Szymańska, U., Wiergowski, M., Sołtyszewski, I., Kuzemko, J., Wiergowska, G., & Woźniak, M. K. (2019). Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: Recent trends and perspectives. Microchemical Journal, 147, 729-740. https://doi.org/10.1016/j.microc.2019.04.003

Velmurugan, B., Senthilkumaar, P., & Karthikeyan, S. (2018). Toxicity impact of fenvalerate on the gill tissue of Oreochromis mossambicus with respect to biochemical changes utilizing FTIR and principal component analysis. Journal of Biological Physics, 44(3), 301-315. https://doi.org/10.1007/s10867-018-9484-9

Vieira, C. E. D., Costa, P. G., Lunardelli, B., de Oliveira, L. F., da Costa Cabrera, L., Risso, W. E., ... & dos Reis Martinez, C. B. (2016). Multiple biomarker responses in Prochilodus lineatus subjected to short-term in situ exposure to streams from agricultural areas in Southern Brazil. Science of the Total Environment, 542, 44-56. https://doi.org/10.1016/j.scitotenv.2015.10.071

Published

24/10/2022

How to Cite

BANHARA, V. F. .; MELLO, A. M. de O.; LYRA, L. F. .; SILVA, M. R. de A. .; SAKANE, K. K. . Analysis of biomolecular changes caused by exposure to the drug diclofenac sodium in fish of the Brycon Opalinus species using Fourier transformed infrared spectroscopy (FTIR). Research, Society and Development, [S. l.], v. 11, n. 14, p. e201111436080, 2022. DOI: 10.33448/rsd-v11i14.36080. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36080. Acesso em: 3 jan. 2025.

Issue

Section

Agrarian and Biological Sciences