Grafting in peri-implant bone defects by in-situ polymer deposition using a 3D pen – in vitro/ ex vivo study

Authors

DOI:

https://doi.org/10.33448/rsd-v11i14.36234

Keywords:

Bioprinting; Biopolymers; Printing, three-dimensional; Polymers.

Abstract

Guided Bone Regeneration (GBR) aims to gain or maintain bone volume due to the use of barrier membranes that act for this purpose. This research aims at grafting polymeric filaments into preformed peri-implant bone defects in porcine condyles in vitro/ex vivo, stabilized and grafted with poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA) polymeric filaments, printed in-situ with a 3D printing pen. Nine porcine condyles received bone defects of 8 mm diameter and 7 mm depth, where occurred the installation of conical implants of 3.5x10 mm. After forming the bone gap region, above the apical bone anchorage, we divided the Poof Bodies (PB) according to the polymeric fill used: G.Control – without filling in the bone gap; G.PLA – with PLA scaffolds and G.PVA – with PVA scaffolds. In another step, the PVA and PLA 3D membranes were compared with the dense polytetrafluoroethylene membrane (PTFE-d). Subsequently, the SkyScan 1172 microtomograph (Bruker-μCT, Kontich, Belgium) analyzed the PB. The analysis corresponding to the total porosity revealed no statistical difference between G.Control (70.44%), G.PLA (59.99%), and G.PVA (57.66%). The closed porosity showed a statistical difference between G.Control (75.509%) and G.PVA (189.19%) and between G.PVA and G.PLA (79,093%). This study demonstrated the possibility of the polymeric filaments of PVA and PLA to fill the bone defects created, revealing an intimate contact on the surface of the implants used. The data suggested a higher porosity of the PVA filament when applied to bone defects or membrane shape.

Author Biographies

Alícia Fabro Moraes, Rio Grande University

 School of Dentistry – Rio Grande University/Duque de Caxias.

Ândrea Leite da Silva Lourençone, Rio Grande University

School of Dentistry – Rio Grande University/Duque de Caxias.

Vivyan Cordeiro Goulart, Rio Grande University

School of Dentistry – Rio Grande University/Duque de Caxias

Ellen dos Santos, Rio Grande University

School of Dentistry – Rio Grande University/Duque de Caxias

Walas Cazzassa Vieira, Rio Grande University

School of Dentistry – Rio Grande University/Duque de Caxias

Marcelo Ferreira da Silva, Rio Grande University

Graduate Program in Dentistry – Rio Grande University/Duque de Caxias

References

Araujo, L. C., Dos Santos, Y. B. C., Leite, R. S., & Heggendorn, F. L. (2022). Extraction associated with L-PRF grafting and immediate installation - Case reports. Research, Society and Development, 11(3), e47211326563. doi.org/10.33448/rsd-v11i3.26563

Basa, B., Jakab, G., Kállai-Szabó, N., Borbás, B., Fülőp, V., Balogh, E., & Antal, I. (2021). Evaluation of biodegradale PVA-Based 3D Printed Carriers during Dissolution. Materials, 14(6), 1350. doi.org/10.3390/ma14061350

Calore, A. R., Srinivas, V., Anand, S., Abillos-sanches, A., Looijmans, S. F. S. P., Van Breemen, L. C. A., & Moroni, L. (2021). Shaping and properties of thermoplastic scaffolds in tissue regeneration: The efect of thermal history on polymer crystallization, surface characteristics and cell fate. Journal of Materials Research, 36(19), 3914-35.10.1557/s43578-021-00403-2

Consolaro, A., Carvalho, R. S., Francischone Jr, C. E., Consolaro, M. F. M. O., & Francishone, C. E. (2010). Saucerização de implantes osseointegrados e o planejamento de casos clínicos ortodônticos simultâneos. Dental Press J. Orthod, 15(3), 19-30. doi.org/10.1590/S2176-94512010000300003

Costa, V. C. F., Bianchi, C. M. P. C., Filho, A. C. G., Crepald, M. L. S., Oliveira, B. L. S., Aguiar, A. P., & Deps, T. D. (2021). Membranas utilizadas em regeneração óssea guiada (ROG): Características e indicações. Revista Faipe, 11(1), 48-57. https://www.revistafaipe.com.br/index.php/RFAIPE/article/view/230

De Oliveira, A. A. R., De Oliveira, J. E., Oréfice R. L., Mansur H. S., & Pereira M. M. (2007). Avaliação das propriedades mecânicas de espumas híbridas de vidro bioativo/álcool polivinílico para aplicação em engenharia de tecidos. Revista Matéria, 12(1), 140 – 149. doi.org/10.1590/S1517-70762007000100018

Herford, A. S., & Dean, J. S. (2011). Complications in bonegrafting. Oral Maxillo fac Surg Clin North Am., 23(3), 433-42. 10.1016/j.coms.2011.04.004.

Ho, S. T., & Hutmacher, D. W. (2006). A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials, 27(8), 1362-76. doi.org/10.1016/j.biomaterials.2005.08.035

Maia, M., Klein, E. S., Monje, T. V., & Paguosa, C. (2010). Reconstrução da estrutura facial por biomateriais: Revisão de literatura. Rev. Bras. Cir. Plást., 25(3), 566-72. doi.org/10.1590/S1983-51752010000300029

Mantovani Junior, M. (2006). Análise histológica de defeitos ósseos preenchidos com biomateriais e associados a implantes osseointegrados. Estudo em cães (Dissertação de mestrado). Universidade Estadual Paulista, Faculdade de Odontologia de Araraquara, São Paulo, SP, Brasil. http://hdl.handle.net/11449/96180

Maridati, P. C., Cremonesi, S., Fontana, F., Cicciù, M., & Maiorana, C. (2016). Management of d-PTFE Membrane Exposure for Having Final Clinical Success. Journal of Oral Implantology, 42(3), 289-91. 10.1563/aaid-joi-D-15-00074

Moncal, K. K., Gudapati, H., Godzik, K. P., Heo, D.N., Kang, Y., Rizk, E., & Ozbolat, I. T. (2021). Intra-Operative Bioprinting of Hard, Soft, and Hard/Soft Composite Tissues for Craniomaxillo facial Reconstruction. Atty. Funct. Specialization, 31, 1-15. doi: 10.1002/adfm.202010858

Okamoto, T., Perri, A. C. C., & Milanezi, L. A. (1973) Implante de poliuretano em alvéolos dentais. Estudos histológicos em ratos. Rev. Fac. Odontol. Aracatuba, 2(1), 19-25. <http://hdl.handle.net/11449/219029>.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS: UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Prado, F. A., Anbinder, A. L., Jaime, A. P., Lima, A. P., Balducci, I., & Rocha, R. F. (2006). Defeitos ósseos em tíbia de ratos: padronização do modelo experimental. Rev. odontol. Univ. Cid. Sao Paulo, 18(1), 7-13.

Prasadh, S., Suresh, S., & Wong, R. (2018). Osteogenic of Graphene in bone tissue engineering scaffolds. Materials, 11(8), 1430. doi.org/10.3390/ma11081430

Rakhmatia, Y. D., Ayukawa, Y., Furuhashi, A., & Koyano, K. (2013). Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J. Prosthodontic Res., 57(1), 3-14. 10.1016/j.jpor.2012.12.001.

Santana. L., Alves, J. L., Netto, A. C. S., & Merlini, C. (2018). Estudo comparativo entre PEGT e PLA para impressão 3D através de caracterização térmica, química e mecânica. Revista Matéria, 23(4), e-12267. doi.org/10.1590/S1517-707620180004.0601

Sanz, M., Dahin, C., Apatzidou, D., Artzi, Z., Bozic, D., Calciolari, E., & Schliephake, H. (2019). Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region.: Consensus report of group 2 of the 15th European Workshop on Periodontology on Bone Regeneration. J Clin Periodontol, 46(21): 82-91, 2019. 10.1111/jcpe.13123

Wang Y., Gao, M., Wang, D., Sun, L., & Webster, T. J. (2020). Nanoscale 3D Bioprinting for Osseous Tissue Manufacturing. International Journal of Nanomedicine, 15, 215–226.

Warrer, K., Karring, T., & Gotfredsen, K. (1993). Formação do ligamento periodontal em torno de diferentes tipos de implantes dentários de titânio. I. O sistema de implante tipo parafuso auto-roscante. Revista de Periodontologia, 64(1), 29-34. doi.org/10.1902/jop.1993.64.1.29

Downloads

Published

27/10/2022

How to Cite

MORAES, A. F. .; LOURENÇONE, Ândrea L. da S. .; GOULART, V. C.; SANTOS, E. dos .; VIEIRA, W. C.; SILVA, M. F. da; HEGGENDORN, F. L. Grafting in peri-implant bone defects by in-situ polymer deposition using a 3D pen – in vitro/ ex vivo study. Research, Society and Development, [S. l.], v. 11, n. 14, p. e301111436234, 2022. DOI: 10.33448/rsd-v11i14.36234. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36234. Acesso em: 15 jan. 2025.

Issue

Section

Health Sciences