Grafting in peri-implant bone defects by in-situ polymer deposition using a 3D pen – in vitro/ ex vivo study
DOI:
https://doi.org/10.33448/rsd-v11i14.36234Keywords:
Bioprinting; Biopolymers; Printing, three-dimensional; Polymers.Abstract
Guided Bone Regeneration (GBR) aims to gain or maintain bone volume due to the use of barrier membranes that act for this purpose. This research aims at grafting polymeric filaments into preformed peri-implant bone defects in porcine condyles in vitro/ex vivo, stabilized and grafted with poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA) polymeric filaments, printed in-situ with a 3D printing pen. Nine porcine condyles received bone defects of 8 mm diameter and 7 mm depth, where occurred the installation of conical implants of 3.5x10 mm. After forming the bone gap region, above the apical bone anchorage, we divided the Poof Bodies (PB) according to the polymeric fill used: G.Control – without filling in the bone gap; G.PLA – with PLA scaffolds and G.PVA – with PVA scaffolds. In another step, the PVA and PLA 3D membranes were compared with the dense polytetrafluoroethylene membrane (PTFE-d). Subsequently, the SkyScan 1172 microtomograph (Bruker-μCT, Kontich, Belgium) analyzed the PB. The analysis corresponding to the total porosity revealed no statistical difference between G.Control (70.44%), G.PLA (59.99%), and G.PVA (57.66%). The closed porosity showed a statistical difference between G.Control (75.509%) and G.PVA (189.19%) and between G.PVA and G.PLA (79,093%). This study demonstrated the possibility of the polymeric filaments of PVA and PLA to fill the bone defects created, revealing an intimate contact on the surface of the implants used. The data suggested a higher porosity of the PVA filament when applied to bone defects or membrane shape.
References
Araujo, L. C., Dos Santos, Y. B. C., Leite, R. S., & Heggendorn, F. L. (2022). Extraction associated with L-PRF grafting and immediate installation - Case reports. Research, Society and Development, 11(3), e47211326563. doi.org/10.33448/rsd-v11i3.26563
Basa, B., Jakab, G., Kállai-Szabó, N., Borbás, B., Fülőp, V., Balogh, E., & Antal, I. (2021). Evaluation of biodegradale PVA-Based 3D Printed Carriers during Dissolution. Materials, 14(6), 1350. doi.org/10.3390/ma14061350
Calore, A. R., Srinivas, V., Anand, S., Abillos-sanches, A., Looijmans, S. F. S. P., Van Breemen, L. C. A., & Moroni, L. (2021). Shaping and properties of thermoplastic scaffolds in tissue regeneration: The efect of thermal history on polymer crystallization, surface characteristics and cell fate. Journal of Materials Research, 36(19), 3914-35.10.1557/s43578-021-00403-2
Consolaro, A., Carvalho, R. S., Francischone Jr, C. E., Consolaro, M. F. M. O., & Francishone, C. E. (2010). Saucerização de implantes osseointegrados e o planejamento de casos clínicos ortodônticos simultâneos. Dental Press J. Orthod, 15(3), 19-30. doi.org/10.1590/S2176-94512010000300003
Costa, V. C. F., Bianchi, C. M. P. C., Filho, A. C. G., Crepald, M. L. S., Oliveira, B. L. S., Aguiar, A. P., & Deps, T. D. (2021). Membranas utilizadas em regeneração óssea guiada (ROG): Características e indicações. Revista Faipe, 11(1), 48-57. https://www.revistafaipe.com.br/index.php/RFAIPE/article/view/230
De Oliveira, A. A. R., De Oliveira, J. E., Oréfice R. L., Mansur H. S., & Pereira M. M. (2007). Avaliação das propriedades mecânicas de espumas híbridas de vidro bioativo/álcool polivinílico para aplicação em engenharia de tecidos. Revista Matéria, 12(1), 140 – 149. doi.org/10.1590/S1517-70762007000100018
Herford, A. S., & Dean, J. S. (2011). Complications in bonegrafting. Oral Maxillo fac Surg Clin North Am., 23(3), 433-42. 10.1016/j.coms.2011.04.004.
Ho, S. T., & Hutmacher, D. W. (2006). A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials, 27(8), 1362-76. doi.org/10.1016/j.biomaterials.2005.08.035
Maia, M., Klein, E. S., Monje, T. V., & Paguosa, C. (2010). Reconstrução da estrutura facial por biomateriais: Revisão de literatura. Rev. Bras. Cir. Plást., 25(3), 566-72. doi.org/10.1590/S1983-51752010000300029
Mantovani Junior, M. (2006). Análise histológica de defeitos ósseos preenchidos com biomateriais e associados a implantes osseointegrados. Estudo em cães (Dissertação de mestrado). Universidade Estadual Paulista, Faculdade de Odontologia de Araraquara, São Paulo, SP, Brasil. http://hdl.handle.net/11449/96180
Maridati, P. C., Cremonesi, S., Fontana, F., Cicciù, M., & Maiorana, C. (2016). Management of d-PTFE Membrane Exposure for Having Final Clinical Success. Journal of Oral Implantology, 42(3), 289-91. 10.1563/aaid-joi-D-15-00074
Moncal, K. K., Gudapati, H., Godzik, K. P., Heo, D.N., Kang, Y., Rizk, E., & Ozbolat, I. T. (2021). Intra-Operative Bioprinting of Hard, Soft, and Hard/Soft Composite Tissues for Craniomaxillo facial Reconstruction. Atty. Funct. Specialization, 31, 1-15. doi: 10.1002/adfm.202010858
Okamoto, T., Perri, A. C. C., & Milanezi, L. A. (1973) Implante de poliuretano em alvéolos dentais. Estudos histológicos em ratos. Rev. Fac. Odontol. Aracatuba, 2(1), 19-25. <http://hdl.handle.net/11449/219029>.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS: UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1
Prado, F. A., Anbinder, A. L., Jaime, A. P., Lima, A. P., Balducci, I., & Rocha, R. F. (2006). Defeitos ósseos em tíbia de ratos: padronização do modelo experimental. Rev. odontol. Univ. Cid. Sao Paulo, 18(1), 7-13.
Prasadh, S., Suresh, S., & Wong, R. (2018). Osteogenic of Graphene in bone tissue engineering scaffolds. Materials, 11(8), 1430. doi.org/10.3390/ma11081430
Rakhmatia, Y. D., Ayukawa, Y., Furuhashi, A., & Koyano, K. (2013). Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J. Prosthodontic Res., 57(1), 3-14. 10.1016/j.jpor.2012.12.001.
Santana. L., Alves, J. L., Netto, A. C. S., & Merlini, C. (2018). Estudo comparativo entre PEGT e PLA para impressão 3D através de caracterização térmica, química e mecânica. Revista Matéria, 23(4), e-12267. doi.org/10.1590/S1517-707620180004.0601
Sanz, M., Dahin, C., Apatzidou, D., Artzi, Z., Bozic, D., Calciolari, E., & Schliephake, H. (2019). Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region.: Consensus report of group 2 of the 15th European Workshop on Periodontology on Bone Regeneration. J Clin Periodontol, 46(21): 82-91, 2019. 10.1111/jcpe.13123
Wang Y., Gao, M., Wang, D., Sun, L., & Webster, T. J. (2020). Nanoscale 3D Bioprinting for Osseous Tissue Manufacturing. International Journal of Nanomedicine, 15, 215–226.
Warrer, K., Karring, T., & Gotfredsen, K. (1993). Formação do ligamento periodontal em torno de diferentes tipos de implantes dentários de titânio. I. O sistema de implante tipo parafuso auto-roscante. Revista de Periodontologia, 64(1), 29-34. doi.org/10.1902/jop.1993.64.1.29
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Alícia Fabro Moraes; Ândrea Leite da Silva Lourençone; Vivyan Cordeiro Goulart; Ellen dos Santos; Walas Cazzassa Vieira; Marcelo Ferreira da Silva; Fabiano Luiz Heggendorn
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.