Root growth in tomato seedlings in response to bacterial inoculation Serratia sp.

Authors

  • Ana Carla Pinheiro Lima Universidade Federal Rural do Rio de Janeiro
  • Leonardo Oliveira Medici Universidade Federal Rural do Rio de Janeiro
  • Débora Alves Gonzaga da Silva Ballesteiro Pereira Empresa Brasileira de Pesquisa Agropecuária (RJ) Agrobiologia, Brasil
  • Eduardo de Assis Lima Universidade Federal do Mato Grosso do Sul

DOI:

https://doi.org/10.33448/rsd-v9i7.3634

Keywords:

IAA; PEG; Serratia sp.; tomato; water deficit.

Abstract

Growth-promoting rhizobacteria are soil bacteria that inhabit the surrounding root, and are directly or indirectly involved in promoting plant growth and development. The productivity efficiency of these groups of microorganisms can be applied to planting crops, providing an interesting alternative for minimize the negative effects of water deficit. The objective of this study was to verify if the mechanism of growth promotion of the bacterium is similar to that promoted by polyethylene glycol (PEG) and to compare the possible effects of water stress on the tomato against the effects of inoculation of the bacterium Serratia sp. The methodology was based on in vitro bioassays using tomato (Solanum lycopersicum L.) seedlings, kept in a growth chamber with temperature of 25 °C and photoperiod of 12 hours. The results revealed that the promotion of tomato root growth by Serratia sp. is similar to that promoted by PEG 7%, differing significantly from the results found with different doses of indoleacetic acid (IAA). The promotion of root growth in tomatoes by Serratia sp. and PEG 7% partly indicates a physical effect, since the water restriction imposed by the PEG molecule decreases the water movement capacity, also observed by bacteria, when colonizing plant tissues and cells (biofilm) reducing the hydraulic conductivity of water through the root. Stimulation to promote root growth in tomatoes cannot be reproduced by auxin.

Author Biographies

Leonardo Oliveira Medici, Universidade Federal Rural do Rio de Janeiro

Professor Associado - Departamento de Ciências Fisiológicas

Débora Alves Gonzaga da Silva Ballesteiro Pereira, Empresa Brasileira de Pesquisa Agropecuária (RJ) Agrobiologia, Brasil

Pesquisadora

Eduardo de Assis Lima, Universidade Federal do Mato Grosso do Sul

Doutorando no Curso de Pós-graduação em Ciência Animal

References

Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University – Science 26: 1–20. DOI: 10.1016 / j.jksus.2013.05.001.

Asli, S., & Neumann, P. M. (2009). Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell and Environment 32: 577–584. DOI: 10.1111/j.1365-3040.2009.01952.x.

Asli, S., & Neumann, P. M. (2010a). Rhizosphere humic acid interacts with root cell walls to reduce hydraulic conductivity and plant development. Plant Soil 336: 313-322. DOI: 10.1007/s11104-010-0483-2

Asli, S., & Neumann, P. M. (2010b). Accumulation of xylem transported protein at pit membranes and associated reductions in hydraulic conductance. Journal of Experimental Botany 61(6): 1711–1717. DOI: 10.1093/jxb/erq037

Braz, T. G. S., Canellas, L. P., & Medici, L.O. (2010). Bioatividade de Ácidos Húmicos em Arabidopsis thaliana. Enciclopédia Biosfera 6(11): 1-9. DOI: 10.1590/0034-737x201764050012

Cardoso, N. S. N., Oliveira, L. M., Fernadez, L. G., Pelacani, C. R., Souza, C. L. M., & Oliveira, A.R. M. F. (2012). Osmocondicionamento na germinação de sementes, crescimento inicial e conteúdo de pigmentos de Myracrodruon urundeuva fr. Allemão. Revista Brasileira de Biociências 10(4): 457-461.

Https://www.ufrgs.br/seerbio/ojs/index.php/rbb/article/view/2242

Dastager, S. G., Deepa, C. K., & Pandey, A. (2011). Potencial plant growth-pomoting activity of Serratia nematodiphila NII-0928 on black pepper (Piper nigrum L.). World Journal Microbiology Biotechnology 27: 259-265. DOI: 10.1007/s11274-010-0454-z.

Dinesh, A. R., Anandaraja, M., Kumarb, A., Bini, Y. K., Subila, K. P., & Aravind, R. (2015). Isolation, characterization, and evaluation of multi-trait plant growthpromoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiological Research 173: 34–43. DOI: 10.1016/j.micres.2015.01.014 0944-5013.

Dobbss, L. B., Medici, L. O., Peres, L. E. P., Pino-Nunes, L. E., Rumjanek, V. M., Façanha, A. R., & Canellas, L. P. (2007). Changes in root development of Arabidopsis promoted by organic matter from oxisols. Annals of Applied Biology Warwickshire 151:199-211. DOI: 10.1111/j.1744-7348.2007.00166.x.

Ewing, B., Hillier, L., Wendl, M. C., & Green, P. (1998a). Base-calling of automated sequencer traces using phred. I Accuracy assessment. Genome Research 8(3): 175-85. DOI: 10.1101 / gr.8.3.175.

Ewing, B., & Green, P. (1998b). Base-calling of automated sequencer traces using phred. II Error probabilities. Genome Research 8(3): DOI: 10.1101/gr.8.3.186.

Grimont, F., & Grimont, P. A. D. (2006). The Genus Serratia. Prokaryotes 6: 219-244. DOI: 10.1007/0-387-30746-X_11.

Gordon, S. A., & Weber, R. P. (1951). Colorimetric estimation of indoleacetic acid. Plant Physiology 26 (1): 192-195. DOI: 10.1104/pp.26.1.192.

Gordon, D., Abajian, C., & Green, P. (1998). Consed: A graphical tool for sequence finishing. Genome Research 8: 195–202. DOI: 10.1101/gr.8.3.195.

Kang, Sang-Mo, Khan, A. L., Waqas, M., You, Young-Hyun, Hamayun, M., Joo, Gil-Jae, Shahzad, R., & Choi, Kyung-Sook (2015). Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low temperature stress in Capsium annuum L. European Journal of Soil Biology xxx: 1-9. DOI: 10.1016/Fj.ejsobi.2015.02.005.

Kavamura, V. N., Santos, S. N., Silva, J. L., Parma, M. M., Ávila, L. A., Visconti, A., Zucchi, T. D., Taketani, R. G., Andreote, F. D., & Melo, I. S. (2013). Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiological Research 168:183–191. DOI: 10.1016/j.micres.2012.12.002.

Lee, S., Flores-Encarnacion, M., Contreras-Zentalla, M., Garcia-Flores, L., Escamilla, J. E., & Kennedy, C. (2004). Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. Journal of Bacteriology 186(16): 5384-5391. DOI: 10.1128 / JB.186.16.5384-5391.2004.

Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition 13, 638–649. DOI: 10.4067/S0718-95162013005000051.

Mundada, P. S., Nikam, T. D., Anil Kumar, S., Umdale, S. D., & Ahir, M.L. (2020). Morpho-physiological and biochemical responses of finger millet (Eleusine coracana (L.) Gaertn.) genotypes to PEG-induced osmotic stress. Biocatalysis and Agricultural Biotechnology 23: 1-10. DOI: 10.1016/j.bcab.2019.101488.

Noori, M. S. S., & Saud, H. M. (2012). Potential plant growth-gromoting activity of Pseudomonas sp. isolated from paddy soil in Malaysia as Bocontrol Agent. Journal Plant Pathology Microbiology 3(2):1-4. DOI: 10.4172/2157-7471.1000120.

Normanly, J. (2010). Approaching cellular and molecular resolution of auxina biosynthesis and metabolism. Cold Spring Harb Perspective Biology 2: a001594. DOI: 10.1101/cshperspect.a001594.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da Pesquisa Científica. [e-book]. (1ª ed). Santa Maria: UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa -Cientifica.pdf?sequence=1. Accessed on: April 23th, 2020.

Pereira, M. R. R., Martins, C. C., Souza, G. S. F., & Martins, D. (2012). Influência do estresse hídrico e salino na germinação de Urochloa decumbens e Urochloa ruziziensis. Bioscience Journal 28(4): 537-545. Https://www.seer.ufu.br/index.php/biosciencejournal/article /view/13447

Radwan, Tel-S., El-D., Mohamed, Z. M., & Reis, V. M. (2004). Efeito da inoculação de Azospirillum e Herbaspirillum na produção de compostos indólicos em plântulas de milho e arroz. Pesquisa Agropecuária Brasileira 39(10): 987-994. DOI: 10.1590/S0100-204X2004001000006.

Rodrigues, E. P., Oliveira, A. L. M., Vidal, M. S., Simões-Araújo, J. L., & Baldani, J. I. (2010). Obtenção e seleção de mutantes Tn5 de Gluconacetobacter diazotrophicus (Pal 5) com alterações na produção de auxinas. Boletim de Pesquisa e Desenvolvimento – EMBRAPA Agrobiologia 20p. ISSN 15162311; 27.

Sarwar, M., & Kremer, R. J. (1995). Determination of bacterially derived auxins using a microplate method. Letters in Applied Microbiology Oxford 20: 282-285. DOI: 10.1111/j.1472-765X.1995.tb00446.x.

Schlindwein, G., Vargas, L. K., Lisboa, B. B., Azambuja, A. C., Granada, C. E., Gabiatti, N. C., Prates, F. & Stumpf, R. (2008). Influência da inoculação de rizóbios sobre a germinação e o vigor de plântulas de alface. Ciência Rural 38 (3): 658-664. DOI: 10.1590/S0103-84782008000300010.

Tabatabaei, S., Ehsanzadeh, P., Etesami, H., Alikhani, H. A., & Glick, B. R. (2016). Indole-3-acetic acid (IAA) producing Pseudomonas isolates inhibit seed germination and α-amylase activity in durum wheat (Triticum turgidum L.). Spanish Journal of Agricultural Research 14(1): 1-10. DOI: 10.5424/sjar/2016141-8859.

Taiz, L., & Zeiger, E. (2013). 5th ed. Fisiologia Vegetal 918p.

Tiepo, A. N., Hertel, M. F., Rocha, S. S., Calzavara, A. K., De Oliveira, A. L. M., Pimenta, J. A., Oliveira, H. C., & Stolf-Moreira, R. (2018). Enhanced drought tolerance in seedlings of Neotropical tree species inoculated with plant growth-promoting bacteria. Plant Physiology and Biochemistry 130: 277-288. DOI: 10.1016/j.plaphy.2018.07.021.

Versalovic, J., Schneider, M., De Bruijn, F. J., & Lupski, J. R. (1994). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in Molecular and Cellular Biology 5: 25-40. ISSN: 08987750.

Downloads

Published

28/04/2020

How to Cite

LIMA, A. C. P.; MEDICI, L. O.; PEREIRA, D. A. G. da S. B.; LIMA, E. de A. Root growth in tomato seedlings in response to bacterial inoculation Serratia sp. Research, Society and Development, [S. l.], v. 9, n. 7, p. e89973634, 2020. DOI: 10.33448/rsd-v9i7.3634. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/3634. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences