Crescimento radicular em plântulas de tomate em resposta a inoculação da bactéria Serratia sp.
DOI:
https://doi.org/10.33448/rsd-v9i7.3634Palavras-chave:
AIA; déficit hídrico; PEG; Serratia sp.; tomate.Resumo
As rizobactérias promotoras de crescimento são bactérias do solo que habitam o entorno da raiz, e estão direta ou indiretamente envolvidas na promoção do crescimento e desenvolvimento das plantas. A eficiência da produtividade desses grupos de microrganismos pode ser aplicada ao plantio de culturas, constituindo uma alternativa interessante, para minimizar os efeitos negativos do déficit hídrico. O objetivo deste estudo foi verificar se o mecanismo de promoção do crescimento da bactéria é semelhante ao promovido pelo Polietileno glicol (PEG) e comparar os possíveis efeitos do estresse hídrico no tomate com os efeitos da inoculação da bactéria Serratia sp . A metodologia foi baseada em bioensaios in vitro utilizando plântulas de tomate (Solanum lycopersicum L.), mantidas em câmara de crescimento com temperatura de 25 °C e fotoperíodo de 12 horas. Os resultados revelaram que a promoção do crescimento da raiz de tomate por Serratia sp. é semelhante ao promovido pelo PEG a 7%, diferindo significativamente dos resultados encontrados com diferentes doses de ácido indol-acético (AIA). A promoção do crescimento radicular em tomateiro por Serratia sp. e PEG 7% indicam parcialmente um efeito físico, uma vez que a restrição hídrica imposta pela molécula PEG diminui a capacidade de movimentação da água, também observada por bactérias, ao colonizar tecidos e células vegetais (biofilme), reduzindo a condutividade hidráulica da água através da raiz. O estímulo à promoção de crescimento radicular nos tomates não pode ser reproduzido pela auxina.
Referências
Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University – Science 26: 1–20. DOI: 10.1016 / j.jksus.2013.05.001.
Asli, S., & Neumann, P. M. (2009). Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell and Environment 32: 577–584. DOI: 10.1111/j.1365-3040.2009.01952.x.
Asli, S., & Neumann, P. M. (2010a). Rhizosphere humic acid interacts with root cell walls to reduce hydraulic conductivity and plant development. Plant Soil 336: 313-322. DOI: 10.1007/s11104-010-0483-2
Asli, S., & Neumann, P. M. (2010b). Accumulation of xylem transported protein at pit membranes and associated reductions in hydraulic conductance. Journal of Experimental Botany 61(6): 1711–1717. DOI: 10.1093/jxb/erq037
Braz, T. G. S., Canellas, L. P., & Medici, L.O. (2010). Bioatividade de Ácidos Húmicos em Arabidopsis thaliana. Enciclopédia Biosfera 6(11): 1-9. DOI: 10.1590/0034-737x201764050012
Cardoso, N. S. N., Oliveira, L. M., Fernadez, L. G., Pelacani, C. R., Souza, C. L. M., & Oliveira, A.R. M. F. (2012). Osmocondicionamento na germinação de sementes, crescimento inicial e conteúdo de pigmentos de Myracrodruon urundeuva fr. Allemão. Revista Brasileira de Biociências 10(4): 457-461.
Https://www.ufrgs.br/seerbio/ojs/index.php/rbb/article/view/2242
Dastager, S. G., Deepa, C. K., & Pandey, A. (2011). Potencial plant growth-pomoting activity of Serratia nematodiphila NII-0928 on black pepper (Piper nigrum L.). World Journal Microbiology Biotechnology 27: 259-265. DOI: 10.1007/s11274-010-0454-z.
Dinesh, A. R., Anandaraja, M., Kumarb, A., Bini, Y. K., Subila, K. P., & Aravind, R. (2015). Isolation, characterization, and evaluation of multi-trait plant growthpromoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiological Research 173: 34–43. DOI: 10.1016/j.micres.2015.01.014 0944-5013.
Dobbss, L. B., Medici, L. O., Peres, L. E. P., Pino-Nunes, L. E., Rumjanek, V. M., Façanha, A. R., & Canellas, L. P. (2007). Changes in root development of Arabidopsis promoted by organic matter from oxisols. Annals of Applied Biology Warwickshire 151:199-211. DOI: 10.1111/j.1744-7348.2007.00166.x.
Ewing, B., Hillier, L., Wendl, M. C., & Green, P. (1998a). Base-calling of automated sequencer traces using phred. I Accuracy assessment. Genome Research 8(3): 175-85. DOI: 10.1101 / gr.8.3.175.
Ewing, B., & Green, P. (1998b). Base-calling of automated sequencer traces using phred. II Error probabilities. Genome Research 8(3): DOI: 10.1101/gr.8.3.186.
Grimont, F., & Grimont, P. A. D. (2006). The Genus Serratia. Prokaryotes 6: 219-244. DOI: 10.1007/0-387-30746-X_11.
Gordon, S. A., & Weber, R. P. (1951). Colorimetric estimation of indoleacetic acid. Plant Physiology 26 (1): 192-195. DOI: 10.1104/pp.26.1.192.
Gordon, D., Abajian, C., & Green, P. (1998). Consed: A graphical tool for sequence finishing. Genome Research 8: 195–202. DOI: 10.1101/gr.8.3.195.
Kang, Sang-Mo, Khan, A. L., Waqas, M., You, Young-Hyun, Hamayun, M., Joo, Gil-Jae, Shahzad, R., & Choi, Kyung-Sook (2015). Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low temperature stress in Capsium annuum L. European Journal of Soil Biology xxx: 1-9. DOI: 10.1016/Fj.ejsobi.2015.02.005.
Kavamura, V. N., Santos, S. N., Silva, J. L., Parma, M. M., Ávila, L. A., Visconti, A., Zucchi, T. D., Taketani, R. G., Andreote, F. D., & Melo, I. S. (2013). Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiological Research 168:183–191. DOI: 10.1016/j.micres.2012.12.002.
Lee, S., Flores-Encarnacion, M., Contreras-Zentalla, M., Garcia-Flores, L., Escamilla, J. E., & Kennedy, C. (2004). Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. Journal of Bacteriology 186(16): 5384-5391. DOI: 10.1128 / JB.186.16.5384-5391.2004.
Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition 13, 638–649. DOI: 10.4067/S0718-95162013005000051.
Mundada, P. S., Nikam, T. D., Anil Kumar, S., Umdale, S. D., & Ahir, M.L. (2020). Morpho-physiological and biochemical responses of finger millet (Eleusine coracana (L.) Gaertn.) genotypes to PEG-induced osmotic stress. Biocatalysis and Agricultural Biotechnology 23: 1-10. DOI: 10.1016/j.bcab.2019.101488.
Noori, M. S. S., & Saud, H. M. (2012). Potential plant growth-gromoting activity of Pseudomonas sp. isolated from paddy soil in Malaysia as Bocontrol Agent. Journal Plant Pathology Microbiology 3(2):1-4. DOI: 10.4172/2157-7471.1000120.
Normanly, J. (2010). Approaching cellular and molecular resolution of auxina biosynthesis and metabolism. Cold Spring Harb Perspective Biology 2: a001594. DOI: 10.1101/cshperspect.a001594.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da Pesquisa Científica. [e-book]. (1ª ed). Santa Maria: UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa -Cientifica.pdf?sequence=1. Accessed on: April 23th, 2020.
Pereira, M. R. R., Martins, C. C., Souza, G. S. F., & Martins, D. (2012). Influência do estresse hídrico e salino na germinação de Urochloa decumbens e Urochloa ruziziensis. Bioscience Journal 28(4): 537-545. Https://www.seer.ufu.br/index.php/biosciencejournal/article /view/13447
Radwan, Tel-S., El-D., Mohamed, Z. M., & Reis, V. M. (2004). Efeito da inoculação de Azospirillum e Herbaspirillum na produção de compostos indólicos em plântulas de milho e arroz. Pesquisa Agropecuária Brasileira 39(10): 987-994. DOI: 10.1590/S0100-204X2004001000006.
Rodrigues, E. P., Oliveira, A. L. M., Vidal, M. S., Simões-Araújo, J. L., & Baldani, J. I. (2010). Obtenção e seleção de mutantes Tn5 de Gluconacetobacter diazotrophicus (Pal 5) com alterações na produção de auxinas. Boletim de Pesquisa e Desenvolvimento – EMBRAPA Agrobiologia 20p. ISSN 15162311; 27.
Sarwar, M., & Kremer, R. J. (1995). Determination of bacterially derived auxins using a microplate method. Letters in Applied Microbiology Oxford 20: 282-285. DOI: 10.1111/j.1472-765X.1995.tb00446.x.
Schlindwein, G., Vargas, L. K., Lisboa, B. B., Azambuja, A. C., Granada, C. E., Gabiatti, N. C., Prates, F. & Stumpf, R. (2008). Influência da inoculação de rizóbios sobre a germinação e o vigor de plântulas de alface. Ciência Rural 38 (3): 658-664. DOI: 10.1590/S0103-84782008000300010.
Tabatabaei, S., Ehsanzadeh, P., Etesami, H., Alikhani, H. A., & Glick, B. R. (2016). Indole-3-acetic acid (IAA) producing Pseudomonas isolates inhibit seed germination and α-amylase activity in durum wheat (Triticum turgidum L.). Spanish Journal of Agricultural Research 14(1): 1-10. DOI: 10.5424/sjar/2016141-8859.
Taiz, L., & Zeiger, E. (2013). 5th ed. Fisiologia Vegetal 918p.
Tiepo, A. N., Hertel, M. F., Rocha, S. S., Calzavara, A. K., De Oliveira, A. L. M., Pimenta, J. A., Oliveira, H. C., & Stolf-Moreira, R. (2018). Enhanced drought tolerance in seedlings of Neotropical tree species inoculated with plant growth-promoting bacteria. Plant Physiology and Biochemistry 130: 277-288. DOI: 10.1016/j.plaphy.2018.07.021.
Versalovic, J., Schneider, M., De Bruijn, F. J., & Lupski, J. R. (1994). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in Molecular and Cellular Biology 5: 25-40. ISSN: 08987750.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.