Multifunctional, stable and low-cost lipopeptide biosurfactant produced by Enterobacter cloacae UCP 1597

Authors

DOI:

https://doi.org/10.33448/rsd-v11i15.36353

Keywords:

Anionic surfactant; Germination inducer; Lipopeptide; Non-toxic; Phytotoxicity.

Abstract

Caatinga of Pernambuco is an area with a potential richness of microorganisms that produce biosurfactants, which are considered good candidates to replace synthetic surfactants in industrial applications due to their functional stability and low toxicity. In this context, current study aimed to investigate the biosurfactant production by the bacterium Enterobacter cloacae UCP 1597, isolated from the Caatinga soil. First fermentation was carried out in Erlenmeyer flasks containing 100 ml of medium, according to a 2³ full-factorial design (FFD). The results showed higher reduction in surface tension (28.3 mN/m) in condition 2 of the FFD, where dispersion of 38.46 cm2 of burnt motor oil was also verified. Then, a second fermentation was performed in Fernbach flasks, containing 2 L of selected medium, confirming reduction in surface and interfacial tension to 30.5 and 2.3 mN/m, respectively, as well as excellent emulsifying properties. The critical micellar dilution (CMD) of the crude biosurfactant was determined (70%) and its use in phytotoxicity assay verified the absence of toxicity for cabbage seeds. The biomolecule showed a high yield (13.69 g/L) after extraction with ethyl acetate and anionic and lipopeptide nature. The stability in acid pH, high temperature and salinity, showed an acid-resistant, thermostable, and halotolerant biocompound. Thus, this lipopeptide was shown to be a multifunctional biosurfactant, since it not only has excellent surface-active properties, but it is also a good emulsifier, dispersant, and potent agent to germination of cabbage seeds. Hence, is suggested its promising application in industrial activities or environmental processes under adverse conditions.

Author Biographies

Tainã Crisia de Souza Fonseca , Federal Rural University of Pernambuco

Doctorate RENORBIO

Dayana Montero Rodríguez, Catholic University of Pernambuco

NPCIAMB-UNICAP

Rafael de Souza Mendonça, Catholic University of Pernambuco

DOCTORATE RENORBIO

Adriana Ferreira de Souza, Catholic University of Pernambuco

NPCIAMB-UNICAP

Luiz Oliveira Costa , Catholic University of Pernambuco

Biological Course-UNICAP

References

Almeida, D. G., Soares da Silva, R. D. C. F., Luna, J. M., Rufino, R. D., Santos, V. A., & Sarubbo, L. A. (2017). Response surface methodology for optimizing the production of biosurfactant by Candida tropicalis on industrial waste substrates. Frontiers in microbiology, 8, 157. https://doi.org/10.3389/fmicb.2017.00157

Andrade, R. F., Silva, T. A., Ribeaux, D. R., Rodriguez, D. M., Souza, A. F., Lima, M. A., Lima, R. A., da Silva, C. A. A., & Campos-Takaki, G. M. (2018). Promising biosurfactant produced by Cunninghamella echinulata UCP 1299 using renewable resources and its application in cotton fabric cleaning process. Advances in Materials Science and Engineering, 2018. https://doi.org/10.1155/2018/1624573

Araújo, H. W., Andrade, R. F., Montero-Rodríguez, D., Rubio-Ribeaux, D., Alves da Silva, C. A., & Campos-Takaki, G. M. (2019). Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microbial Cell Factories, 18(1), 1-13. https://doi.org/10.1186/s12934-018-1046-0

Belhaj, A. F., Elraies, K. A., Mahmood, S. M., Zulkifli, N. N., Akbari, S., & Hussien, O. S. (2020). The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review. Journal of Petroleum Exploration and Production Technology, 10(1), 125-137. https://doi.org/10.1007/s13202-019-0685-y

Bergström, L. M. (2015). Explaining the growth behavior of surfactant micelles. Journal of colloid and interface science, 440, 109-118. https://doi.org/10.1016/j.jcis.2014.10.054

Brumano, L. P., Soler, M. F., & da Silva, S. S. (2016). Recent advances in sustainable production and application of biosurfactants in Brazil and Latin America. Industrial Biotechnology, 12(1), 31-39. https://doi.org/10.1089/ind.2015.0027

Campos, J. M., Stamford, T. L. M., & Sarubbo, L. A. (2019). Characterization and application of a biosurfactant isolated from Candida utilis in salad dressings. Biodegradation, 30(4), 313-324. https://doi.org/10.1007/s10532-019-09877-8

Chandankere, R., Ravikumar, Y., Zabed, H. M., Sabapathy, P. C., Yun, J., Zhang, G., & Qi, X. (2020). Conversion of agroindustrial wastes to rhamnolipid by Enterobacter sp. UJS-RC and its role against biofilm-forming foodborne pathogens. Journal of Agricultural and Food Chemistry, 68(52), 15478-15489. https://doi.org/10.1021/acs.jafc.0c05028

Chua, M. H., Shah, K. W., Zhou, H., & Xu, J. (2019). Recent advances in aggregation-induced emission chemosensors for anion sensing. Molecules, 24(15), 2711. https://doi.org/10.3390/molecules24152711

Cooper, D. G., & Goldenberg, B. G. (1987). Surface-active agents from two Bacillus species. Applied and environmental microbiology, 53(2), 224-229. https://doi.org/10.1128/aem.53.2.224-229.1987

Curiel-Maciel, N. F., Martínez-Morales, F., Licea-Navarro, A. F., Bertrand, B., Aguilar-Guadarrama, A., Rosas-Galván, N. S., Morales-Guzmán,D.,Rivera-Gómez.,N., Gutiérrez-Ríos, R. M., & Trejo-Hernández, M. R. (2021). Characterization of Enterobacter cloacae BAGM01 producing a thermostable and alkaline-tolerant rhamnolipid biosurfactant from the Gulf of Mexico. Marine Biotechnology, 23(1), 106-126. https://doi.org/10.1007/s10126-020-10006-3

da Silva, R. C. F. S., Luna, J. M., Rufino, R. D., & Sarubbo, L. A. (2021). Ecotoxicity of the formulated biosurfactant from Pseudomonas cepacia CCT 6659 and application in the bioremediation of terrestrial and aquatic environments impacted by oil spills. Process Safety and Environmental

Darvishi, P., Ayatollahi, S., Mowla, D., & Niazi, A. (2011). Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids and Surfaces B: Biointerfaces, 84(2), 292-300. https://doi.org/10.1016/j.colsurfb.2011.01.011

de Faria, A. F., Teodoro-Martinez, D. S., de Oliveira Barbosa, G. N., Vaz, B. G., Silva, Í. S., Garcia, J. S., Tótola, M. R., Eberlin, M. N., Grossman, M., Alves, O. L., & Durrant, L. R. (2011). Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochemistry, 46(10), 1951-1957. https://doi.org/10.1016/j.procbio.2011.07.001

de Medeiros, A. D. L. M., da Silva Junior, C. J. G., de Souza, A. F., de Lima Cavantanti, D., Rodriguez, D. M., da Silva, C. A. A., & da Silva Andrade, R. F. (2022). Production of biosurfactant by Cunninghamella elegans UCP 0542 using food industry waste in 3 L flasks and evaluation of orbital agitation effect. Research, Society and Development, 11(4), e50311427438-e50311427438. https://doi.org/10.33448/rsd-v11i4.27438

Dehghan-Noudeh, G., Housaindokht, M., & Bazzaz, B. S. F. (2005). Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633. Journal of Microbiology, 43(3), 272-276.

Deivakumari, M., Sanjivkumar, M., Suganya, A. M., Prabakaran, J. R., Palavesam, A., & Immanuel, G. (2020). Studies on reclamation of crude oil polluted soil by biosurfactant producing Pseudomonas aeruginosa (DKB1). Biocatalysis and Agricultural Biotechnology, 29, 101773. https://doi.org/10.1016/j.bcab.2020.101773

dos Santos, R. A., Rodríguez, D. M., Ferreira, I. N. D. S., de Almeida, S. M., Takaki, G. M. D. C., & de Lima, M. A. B. (2021). Novel production of biodispersant by Serratia marcescens UCP 1549 in solid-state fermentation and application for oil spill bioremediation. Environmental Technology, 1-12.

Ekprasert, J., Laopila, K., & Kanakai, S. (2019). Biosurfactant production by a newly isolated Enterobacter cloacae B14 capable of utilizing spent engine oil. Pol J Environ Stud, 28(4), 2603-2610. https://doi.org/10.15244/pjoes/92120

Ekprasert, J., Yosprasong, S., & Chaiyosang, B. (2021). Production, characterisation and antimicrobial activity of biosurfactants produced by soil bacteria using agricultural wastes. In Biology and Environment: Proceedings of the Royal Irish Academy (Vol. 121, No. 2, pp. 83-93). Royal Irish Academy.: https://doi.org/10.3318/bioe.2021.07

Eras-Muñoz, E., Farré, A., Sánchez, A., Font, X., & Gea, T. (2022). Microbial biosurfactants: a review of recent environmental applications. Bioengineered, 13(5), 12365-12391. https://doi.org/10.1080/21655979.2022.2074621

Faccioli, Y. E. S., da Silva, G. O., & Sarubbo, L. A. (2022). Application of a biosurfactant from Pseudomonas cepacia CCT 6659 in bioremediation and metallic corrosion inhibition processes. Journal of Biotechnology, 351, 109-121. https://doi.org/10.1016/j.jbiotec.2022.04.009

Fai, A. E. C., Simiqueli, A. P. R., de Andrade, C. J., Ghiselli, G., & Pastore, G. M. (2015). Optimized production of biosurfactant from Pseudozyma tsukubaensis using cassava wastewater and consecutive production of galactooligosaccharides: an integrated process. Biocatalysis and Agricultural Biotechnology, 4(4), 535-542. https://doi.org/10.1016/j.bcab.2015.10.001

Fonseca, T. C. S., de Souza, A. F., dos Santos, P. N., da Silva, P. H., Rodríguez, D. M., Costa, L. O., & Campos-Takaki, G. M. (2022). Sustainable production of biosurfactant by Issatchenkia orientalis UCP 1603 using renewable substrates. Research, Society and Development, 11(4), e16111427174-e16111427174. https://doi.org/10.33448/rsd-v11i4.27174

Fukuoka, T., Kawamura, M., Morita, T., Imura, T., Sakai, H., Abe, M., & Kitamoto, D. (2008). A basidiomycetous yeast, Pseudozyma crassa, produces novel diastereomers of conventional mannosylerythritol lipids as glycolipid biosurfactants. Carbohydrate research, 343(17), 2947-2955. https://doi.org/10.1016/j.carres.2008.08.034

Gaur, V. K., Sharma, P., Sirohi, R., Varjani, S., Taherzadeh, M. J., Chang, J. S., Ng, H. Y.,Wong, J. W. C., & Kim, S. H. (2022). Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview. Bioresource technology, 343, 126059. https://doi.org/10.1016/j.biortech.2021.126059

Haddad, N. I., Wang, J., & Mu, B. (2009). Identification of a biosurfactant producing strain: Bacillus subtilis HOB2. Protein and Peptide letters, 16(1), 7-13.

Hema, T., Kiran, G. S., Sajayyan, A., Ravendran, A., Raj, G. G., & Selvin, J. (2019). Response surface optimization of a glycolipid biosurfactant produced by a sponge associated marine bacterium Planococcus sp. MMD26. Biocatalysis and Agricultural Biotechnology, 18, 101071. https://doi.org/10.1016/j.bcab.2019.101071

Hosseini, E., & Tahmasebi, R. (2020). Experimental investigation of the performance of biosurfactant to wettability alteration and interfacial tension (IFT) reduction in microbial enhanced oil recovery (MEOR). Petroleum Science and Technology, 38(3), 147-158. https://doi.org/10.1080/10916466.2019.1575863

Jadhav, S. B., Phugare, S. S., Patil, P. S., & Jadhav, J. P. (2011). Biochemical degradation pathway of textile dye Remazol red and subsequent toxicological evaluation by cytotoxicity, genotoxicity and oxidative stress studies. International Biodeterioration & Biodegradation, 65(6), 733-743. https://doi.org/10.1016/j.ibiod.2011.04.003

Jemil, N., Ben Ayed, H., Manresa, A., Nasri, M., & Hmidet, N. (2017). Antioxidant properties, antimicrobial and anti-adhesive activities of DCS1 lipopeptides from Bacillus methylotrophicus DCS1. BMC microbiology, 17(1), 1-11. https://doi.org/10.1186/s12866-017-1050-2

Jemil, N., Hmidet, N., Ayed, H. B., & Nasri, M. (2018). Physicochemical characterization of Enterobacter cloacae C3 lipopeptides and their applications in enhancing diesel oil biodegradation. Process Safety and Environmental Protection, 117, 399-407. https://doi.org/10.1016/j.psep.2018.05.018

Jemil, N., Hmidet, N., Manresa, A., Rabanal, F., & Nasri, M. (2019). Isolation and characterization of kurstakin and surfactin isoforms produced by Enterobacter cloacae C3 strain. Journal of Mass Spectrometry, 54(1), 7-18. https://doi.org/10.1002/jms.4302

Khopade, A., Biao, R., Liu, X., Mahadik, K., Zhang, L., & Kokare, C. (2012). Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination, 285, 198-204. https://doi.org/10.1016/j.desal.2011.10.002

Khubaib, M. A., Raza, Z. A., Abid, S., Nazir, A., & Tariq, M. R. (2021). Cell‐Free Culture Broth of Pseudomonas aeruginosa—an alternative source of biodispersant to synthetic surfactants for dyeing the polyester fabric. Journal of Surfactants and Detergents, 24(2), 343-355. https://doi.org/10.1002/jsde.12485

Kuyukina, M. S., Ivshina, I. B., Philp, J. C., Christofi, N., Dunbar, S. A., & Ritchkova, M. I. (2001). Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods, 46(2), 149-156. https://doi.org/10.1016/S0167-7012(01)00259-7

Liang, T. W., Wu, C. C., Cheng, W. T., Chen, Y. C., Wang, C. L., Wang, I. L., & Wang, S. L. (2014). Exopolysaccharides and antimicrobial biosurfactants produced by Paenibacillus macerans TKU029. Applied biochemistry and biotechnology, 172(2), 933-950. https://doi.org/10.1007/s12010-013-0568-5

Lima, R. A., Andrade, R. F., RodrÃguez, D. M., Araujo, H. W., Santos, V. P., & Campos-Takaki, G. M. (2017). Production and characterization of biosurfactant isolated from Candida glabrata using renewable substrates. African journal of microbiology research, 11(6), 237-244. https://doi.org/10.5897/AJMR2016.8341

Lima, T. M., Procópio, L. C., Brandão, F. D., Leão, B. A., Tótola, M. R., & Borges, A. C. (2011) Evaluation of bacterial surfactant toxicity towards petroleum degrading microorganisms. Bioresource Technology, 102(3),2957–2964. https://doi.org/10.1016/j.biortech.2010.09.109

López-Prieto, A., Vecino, X., Rodríguez-López, L., Moldes, A. B., & Cruz, J. M. (2020). Fungistatic and fungicidal capacity of a biosurfactant extract obtained from corn steep water. Foods, 9(5), 662. https://doi.org/10.3390/foods9050662

Luna, J. M., Rufino, R. D., Sarubbo, L. A., & Campos-Takaki, G. M. (2013). Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Colloids and surfaces B: Biointerfaces, 102, 202-209.https://doi.org/10.1016/j.colsurfb.2012.08.008

Maia, P. C. D. V. S., Rodríguez, D. M., de Souza, A. F., da Silva Andrade, R. F., & Campos-Takaki, G. M. (2022). Production of biosurfactant by Bacillus subtilis UCP 0999 using cassava wastewater (CWW) and waste frying oil (WFO) as renewable substrates. Research, Society and Development, 11(6), e17011628805-e17011628805. https://doi.org/10.33448/rsd-v11i6.28805

Manocha, M. S., San-Blas, G., & Centeno, S. (1980). Lipid composition of Paracoccidioides brasiliensis: possible correlation with virulence of different strains. Microbiology, 117(1), 147-154. https://doi.org/10.1099/00221287-117-1-147

Mendonça, R. S., Sá, A. V. P., Rosendo, L. A., dos Santos, R. A., do Amaral Marques, N. S. A., Souza, A. F., Rodríguez, D. M., & de Campos Takaki, G. M. (2021). Production of biosurfactant and lipids by a novel strain of Absidia cylindrospora UCP 1301 isolated from Caatinga soil using low-cost agro-industrial by-products. Brazilian Journal of Development, 7(1), 8300-8313.

Nakama, Y. (2017). ”Surfactants,” in Cosmetic Science and Technology. Amsterdam: Elsevier, 231–244.

Negin, C., Ali, S., & Xie, Q. (2017). Most common surfactants employed in chemical enhanced oil recovery. Petroleum, 3(2), 197-211. https://doi.org/10.1016/j.petlm.2016.11.007

Nunes, H. M. A. R., Vieira, I. M. M., Santos, B. L. P., Silva, D. P., & Ruzene, D. S. (2022). Biosurfactants produced from corncob: a bibliometric perspective of a renewable and promising substrate. Preparative Biochemistry & Biotechnology, 52(2), 123-134. https://doi.org/10.1080/10826068.2021.1929319

Pele, M. A., Ribeaux, D. R., Vieira, E. R., Souza, A. F., Luna, M. A., Rodríguez, D. M., Andrade, R. F. S., Alviano, D. S., Alviano, C. S., Bergter, E. B., Santiago, A. L. C. M. A. & Campos-Takaki, G. M. (2019). Conversion of renewable substrates for biosurfactant production by Rhizopus arrhizus UCP 1607 and enhancing the removal of diesel oil from marine soil. Electronic Journal of Biotechnology, 38, 40-48. https://doi.org/10.1016/j.ejbt.2018.12.003

Perfumo, A., Banat, I. M., & Marchant, R. (2018). Going green and cold: biosurfactants from low-temperature environments to biotechnology applications. Trends in biotechnology, 36(3), 277-289. https://doi.org/10.1016/j.tibtech.2017.10.016

Pinto, M. I. S., Campos Guerra, J. M., Meira, H. M., Sarubbo, L. A., & de Luna, J. M. (2022). A biosurfactant from Candida bombicola: its synthesis, characterization, and its application as a food emulsions. Foods, 11(4), 561. https://doi.org/10.3390/foods11040561

Purwasena, I. A., Astuti, D. I., Syukron, M., Amaniyah, M., & Sugai, Y. (2019). Stability test of biosurfactant produced by Bacillus licheniformis DS1 using experimental design and its application for MEOR. Journal of Petroleum Science and Engineering, 183, 106383. https://doi.org/10.1016/j.petrol.2019.106383

Rahman, P. K., Mayat, A., Harvey, J. G. H., Randhawa, K. S., Relph, L. E., & Armstrong, M. C. (2019). Biosurfactants and bioemulsifiers from marine algae. In The Role of Microalgae in Wastewater Treatment (pp. 169-188). Springer, Singapore. https://doi.org/10.1007/978-981-13-1586-2_13

Rocha e Silva, N. M. P., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2014). Screening of Pseudomonas species for biosurfactant production using low-cost substrates. Biocatalysis and Agricultural Biotechnology, 3(2), 132-139. https://doi.org/10.1016/j.bcab.2013.09.005

Rodríguez, D. M., de Souza Mendonça, R., de Souza, A. F., da Silva Ferreira, I. N., da Silva Andrade, R. F., & Campos-Takaki, G. M. (2022). Solid-state fermentation for low-cost production of biosurfactant by promising Mucor hiemalis UCP 1309. Research, Society and Development, 11(6), e25211628817-e25211628817. https://doi.org/10.33448/rsd-v11i6.28817

Rulli, M. M., Alvarez, A., Fuentes, M. S., & Colin, V. L. (2019). Production of a microbial emulsifier with biotechnological potential for environmental applications. Colloids and Surfaces B: Biointerfaces, 174, 459-466. 10.1016/j.colsurfb.2018.11.052. https://doi.org/10.1016/j.colsurfb.2018.11.052

Sajna, K. V., Sukumaran, R. K., Jayamurthy, H., Reddy, K. K., Kanjilal, S., Prasad, R. B., & Pandey, A. (2013). Studies on biosurfactants from Pseudozyma sp. NII 08165 and their potential application as laundry detergent additives. Biochemical Engineering Journal, 78, 85-92. https://doi.org/10.1016/j.bej.2012.12.014

Santiago, M. G., Lins, U. M. D. B. L., de Campos Takaki, G. M., da Costa Filho, L. O., & da Silva Andrade, R. F. (2021). Produção de biossurfactante por Mucor circinelloides UCP 0005 usando novo meio de cultura formulado com cascas de jatobá (Hymenaea courbaril L.) e milhocina. Brazilian Journal of Development, 7(5), 51292-51304. https://doi.org/10.34117/bjdv7n5-497

Santos, F., Freitas, K., Neto, J. C., Ana, G. F. S., Rocha-Leao, M. H., & Amaral, P. (2018). Tiger nut (Cyperus esculentus) milk byproduct and corn steep liquor for biosurfactant production by yarrowia lipolytica. Chemical Engineering Transactions, 65, 331-336. https://doi.org/10.3303/CET1865056

Santos, V. S. V., Silveira, E., & Pereira, B. B. (2018). Toxicity and applications of surfactin for health and environmental biotechnology. Journal of Toxicology and Environmental Health, Part B, 21(6-8), 382-399. https://doi.org/10.1080/10937404.2018.1564712

Sari, M., Kusharyoto, W., & Artika, I. M. (2014). Screening for biosurfactant-producing yeast: confirmation of biosurfactant production. Biotechnology, 13(3), 106.

Sarubbo, L. A., Maria da Gloria, C. S., Durval, I. J. B., Bezerra, K. G. O., Ribeiro, B. G., Silva, I. A., Twigg, M. S., & Banat, I. M. (2022). Biosurfactants: Production, properties, applications, trends, and general perspectives. Biochemical Engineering Journal, 108377. https://doi.org/10.1016/j.bej.2022.108377

Satpute, S. K., Banpurkar, A. G., Dhakephalkar, P. K., Banat, I. M., & Chopade, A. B (2010) Methods for investigating biosurfactants and bioemulsifiers: a review. Crit Rev Biotechnol 1(1):1–18. https://doi.org/10.3109/07388550903427280

Thavasi, R., & Banat, I. M. (2019). Downstream processing of microbial biosurfactants. In Microbial biosurfactants and their environmental and industrial applications (pp. 16-27). CRC Press.

Tiquia, S. M., Tam, N. F. Y., & Hodgkiss, I. J. (1996). Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environmental pollution, 93(3), 249-256. https://doi.org/10.1016/S0269-7491(96)00052-8

Uzoigwe, C., Burgess, J. G., Ennis, C. J., & Rahman, P. K. (2015). Bioemulsifiers are not biosurfactants and require different screening approaches. Frontiers in microbiology, 6, 245. https://doi.org/10.3389/fmicb.2015.00245

Venkataraman, S., Rajendran, D. S., Kumar, P. S., Vo, D. V. N., & Vaidyanathan, V. K. (2021). Extraction, purification and applications of biosurfactants based on microbial-derived glycolipids and lipopeptides: a review. Environmental Chemistry Letters, 1-22. https://doi.org/10.1007/s10311-021-01336-2

Yorke, K., Potanin, A., Jogun, S., Morgan, A., Shen, H., & Amin, S. (2021). High‐performance sulphate‐free cleansers: Surface activity, foaming and rheology. International Journal of Cosmetic Science, 43(6), 636-652. https://doi.org/10.1111/ics.12740

You, J., Yang, S. Z., & Mu, B. Z. (2015). Structural characterization of lipopeptides from Enterobacter sp. strain N18 reveals production of surfactin homologues. European Journal of Lipid Science and Technology, 117(6), 890-898. https://doi.org/10.1002/ejlt.201400386

Youssef, N. H., Duncan, K. E., Nagle, D. P., Savage, K. N., Knapp, R. M., & McInerney, M. J. (2004). Comparison of methods to detect biosurfactant production by diverse microorganisms. Journal of microbiological methods, 56(3), 339–347. https://doi.org/10.1016/j.mimet.2003.11.001

Zhu, Z., Zhang, B., Cai, Q., Ling, J., Lee, K., & Chen, B. (2020). Fish waste based lipopeptide production and the potential application as a bio-dispersant for oil spill control. Frontiers in bioengineering and biotechnology, 8, 734. https://doi.org/10.3389/fbioe.2020.00734

Downloads

Published

09/11/2022

How to Cite

FONSECA , T. C. de S.; RODRÍGUEZ, D. M.; MENDONÇA, R. de S. .; SOUZA, A. F. de .; COSTA , L. O. .; CAMPOS-TAKAKI, G. M. de. Multifunctional, stable and low-cost lipopeptide biosurfactant produced by Enterobacter cloacae UCP 1597. Research, Society and Development, [S. l.], v. 11, n. 15, p. e41111536353, 2022. DOI: 10.33448/rsd-v11i15.36353. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36353. Acesso em: 22 nov. 2024.

Issue

Section

Engineerings