Multifunctional, stable and low-cost lipopeptide biosurfactant produced by Enterobacter cloacae UCP 1597
DOI:
https://doi.org/10.33448/rsd-v11i15.36353Keywords:
Anionic surfactant; Germination inducer; Lipopeptide; Non-toxic; Phytotoxicity.Abstract
Caatinga of Pernambuco is an area with a potential richness of microorganisms that produce biosurfactants, which are considered good candidates to replace synthetic surfactants in industrial applications due to their functional stability and low toxicity. In this context, current study aimed to investigate the biosurfactant production by the bacterium Enterobacter cloacae UCP 1597, isolated from the Caatinga soil. First fermentation was carried out in Erlenmeyer flasks containing 100 ml of medium, according to a 2³ full-factorial design (FFD). The results showed higher reduction in surface tension (28.3 mN/m) in condition 2 of the FFD, where dispersion of 38.46 cm2 of burnt motor oil was also verified. Then, a second fermentation was performed in Fernbach flasks, containing 2 L of selected medium, confirming reduction in surface and interfacial tension to 30.5 and 2.3 mN/m, respectively, as well as excellent emulsifying properties. The critical micellar dilution (CMD) of the crude biosurfactant was determined (70%) and its use in phytotoxicity assay verified the absence of toxicity for cabbage seeds. The biomolecule showed a high yield (13.69 g/L) after extraction with ethyl acetate and anionic and lipopeptide nature. The stability in acid pH, high temperature and salinity, showed an acid-resistant, thermostable, and halotolerant biocompound. Thus, this lipopeptide was shown to be a multifunctional biosurfactant, since it not only has excellent surface-active properties, but it is also a good emulsifier, dispersant, and potent agent to germination of cabbage seeds. Hence, is suggested its promising application in industrial activities or environmental processes under adverse conditions.
References
Almeida, D. G., Soares da Silva, R. D. C. F., Luna, J. M., Rufino, R. D., Santos, V. A., & Sarubbo, L. A. (2017). Response surface methodology for optimizing the production of biosurfactant by Candida tropicalis on industrial waste substrates. Frontiers in microbiology, 8, 157. https://doi.org/10.3389/fmicb.2017.00157
Andrade, R. F., Silva, T. A., Ribeaux, D. R., Rodriguez, D. M., Souza, A. F., Lima, M. A., Lima, R. A., da Silva, C. A. A., & Campos-Takaki, G. M. (2018). Promising biosurfactant produced by Cunninghamella echinulata UCP 1299 using renewable resources and its application in cotton fabric cleaning process. Advances in Materials Science and Engineering, 2018. https://doi.org/10.1155/2018/1624573
Araújo, H. W., Andrade, R. F., Montero-Rodríguez, D., Rubio-Ribeaux, D., Alves da Silva, C. A., & Campos-Takaki, G. M. (2019). Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microbial Cell Factories, 18(1), 1-13. https://doi.org/10.1186/s12934-018-1046-0
Belhaj, A. F., Elraies, K. A., Mahmood, S. M., Zulkifli, N. N., Akbari, S., & Hussien, O. S. (2020). The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review. Journal of Petroleum Exploration and Production Technology, 10(1), 125-137. https://doi.org/10.1007/s13202-019-0685-y
Bergström, L. M. (2015). Explaining the growth behavior of surfactant micelles. Journal of colloid and interface science, 440, 109-118. https://doi.org/10.1016/j.jcis.2014.10.054
Brumano, L. P., Soler, M. F., & da Silva, S. S. (2016). Recent advances in sustainable production and application of biosurfactants in Brazil and Latin America. Industrial Biotechnology, 12(1), 31-39. https://doi.org/10.1089/ind.2015.0027
Campos, J. M., Stamford, T. L. M., & Sarubbo, L. A. (2019). Characterization and application of a biosurfactant isolated from Candida utilis in salad dressings. Biodegradation, 30(4), 313-324. https://doi.org/10.1007/s10532-019-09877-8
Chandankere, R., Ravikumar, Y., Zabed, H. M., Sabapathy, P. C., Yun, J., Zhang, G., & Qi, X. (2020). Conversion of agroindustrial wastes to rhamnolipid by Enterobacter sp. UJS-RC and its role against biofilm-forming foodborne pathogens. Journal of Agricultural and Food Chemistry, 68(52), 15478-15489. https://doi.org/10.1021/acs.jafc.0c05028
Chua, M. H., Shah, K. W., Zhou, H., & Xu, J. (2019). Recent advances in aggregation-induced emission chemosensors for anion sensing. Molecules, 24(15), 2711. https://doi.org/10.3390/molecules24152711
Cooper, D. G., & Goldenberg, B. G. (1987). Surface-active agents from two Bacillus species. Applied and environmental microbiology, 53(2), 224-229. https://doi.org/10.1128/aem.53.2.224-229.1987
Curiel-Maciel, N. F., Martínez-Morales, F., Licea-Navarro, A. F., Bertrand, B., Aguilar-Guadarrama, A., Rosas-Galván, N. S., Morales-Guzmán,D.,Rivera-Gómez.,N., Gutiérrez-Ríos, R. M., & Trejo-Hernández, M. R. (2021). Characterization of Enterobacter cloacae BAGM01 producing a thermostable and alkaline-tolerant rhamnolipid biosurfactant from the Gulf of Mexico. Marine Biotechnology, 23(1), 106-126. https://doi.org/10.1007/s10126-020-10006-3
da Silva, R. C. F. S., Luna, J. M., Rufino, R. D., & Sarubbo, L. A. (2021). Ecotoxicity of the formulated biosurfactant from Pseudomonas cepacia CCT 6659 and application in the bioremediation of terrestrial and aquatic environments impacted by oil spills. Process Safety and Environmental
Darvishi, P., Ayatollahi, S., Mowla, D., & Niazi, A. (2011). Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids and Surfaces B: Biointerfaces, 84(2), 292-300. https://doi.org/10.1016/j.colsurfb.2011.01.011
de Faria, A. F., Teodoro-Martinez, D. S., de Oliveira Barbosa, G. N., Vaz, B. G., Silva, Í. S., Garcia, J. S., Tótola, M. R., Eberlin, M. N., Grossman, M., Alves, O. L., & Durrant, L. R. (2011). Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochemistry, 46(10), 1951-1957. https://doi.org/10.1016/j.procbio.2011.07.001
de Medeiros, A. D. L. M., da Silva Junior, C. J. G., de Souza, A. F., de Lima Cavantanti, D., Rodriguez, D. M., da Silva, C. A. A., & da Silva Andrade, R. F. (2022). Production of biosurfactant by Cunninghamella elegans UCP 0542 using food industry waste in 3 L flasks and evaluation of orbital agitation effect. Research, Society and Development, 11(4), e50311427438-e50311427438. https://doi.org/10.33448/rsd-v11i4.27438
Dehghan-Noudeh, G., Housaindokht, M., & Bazzaz, B. S. F. (2005). Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633. Journal of Microbiology, 43(3), 272-276.
Deivakumari, M., Sanjivkumar, M., Suganya, A. M., Prabakaran, J. R., Palavesam, A., & Immanuel, G. (2020). Studies on reclamation of crude oil polluted soil by biosurfactant producing Pseudomonas aeruginosa (DKB1). Biocatalysis and Agricultural Biotechnology, 29, 101773. https://doi.org/10.1016/j.bcab.2020.101773
dos Santos, R. A., Rodríguez, D. M., Ferreira, I. N. D. S., de Almeida, S. M., Takaki, G. M. D. C., & de Lima, M. A. B. (2021). Novel production of biodispersant by Serratia marcescens UCP 1549 in solid-state fermentation and application for oil spill bioremediation. Environmental Technology, 1-12.
Ekprasert, J., Laopila, K., & Kanakai, S. (2019). Biosurfactant production by a newly isolated Enterobacter cloacae B14 capable of utilizing spent engine oil. Pol J Environ Stud, 28(4), 2603-2610. https://doi.org/10.15244/pjoes/92120
Ekprasert, J., Yosprasong, S., & Chaiyosang, B. (2021). Production, characterisation and antimicrobial activity of biosurfactants produced by soil bacteria using agricultural wastes. In Biology and Environment: Proceedings of the Royal Irish Academy (Vol. 121, No. 2, pp. 83-93). Royal Irish Academy.: https://doi.org/10.3318/bioe.2021.07
Eras-Muñoz, E., Farré, A., Sánchez, A., Font, X., & Gea, T. (2022). Microbial biosurfactants: a review of recent environmental applications. Bioengineered, 13(5), 12365-12391. https://doi.org/10.1080/21655979.2022.2074621
Faccioli, Y. E. S., da Silva, G. O., & Sarubbo, L. A. (2022). Application of a biosurfactant from Pseudomonas cepacia CCT 6659 in bioremediation and metallic corrosion inhibition processes. Journal of Biotechnology, 351, 109-121. https://doi.org/10.1016/j.jbiotec.2022.04.009
Fai, A. E. C., Simiqueli, A. P. R., de Andrade, C. J., Ghiselli, G., & Pastore, G. M. (2015). Optimized production of biosurfactant from Pseudozyma tsukubaensis using cassava wastewater and consecutive production of galactooligosaccharides: an integrated process. Biocatalysis and Agricultural Biotechnology, 4(4), 535-542. https://doi.org/10.1016/j.bcab.2015.10.001
Fonseca, T. C. S., de Souza, A. F., dos Santos, P. N., da Silva, P. H., Rodríguez, D. M., Costa, L. O., & Campos-Takaki, G. M. (2022). Sustainable production of biosurfactant by Issatchenkia orientalis UCP 1603 using renewable substrates. Research, Society and Development, 11(4), e16111427174-e16111427174. https://doi.org/10.33448/rsd-v11i4.27174
Fukuoka, T., Kawamura, M., Morita, T., Imura, T., Sakai, H., Abe, M., & Kitamoto, D. (2008). A basidiomycetous yeast, Pseudozyma crassa, produces novel diastereomers of conventional mannosylerythritol lipids as glycolipid biosurfactants. Carbohydrate research, 343(17), 2947-2955. https://doi.org/10.1016/j.carres.2008.08.034
Gaur, V. K., Sharma, P., Sirohi, R., Varjani, S., Taherzadeh, M. J., Chang, J. S., Ng, H. Y.,Wong, J. W. C., & Kim, S. H. (2022). Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview. Bioresource technology, 343, 126059. https://doi.org/10.1016/j.biortech.2021.126059
Haddad, N. I., Wang, J., & Mu, B. (2009). Identification of a biosurfactant producing strain: Bacillus subtilis HOB2. Protein and Peptide letters, 16(1), 7-13.
Hema, T., Kiran, G. S., Sajayyan, A., Ravendran, A., Raj, G. G., & Selvin, J. (2019). Response surface optimization of a glycolipid biosurfactant produced by a sponge associated marine bacterium Planococcus sp. MMD26. Biocatalysis and Agricultural Biotechnology, 18, 101071. https://doi.org/10.1016/j.bcab.2019.101071
Hosseini, E., & Tahmasebi, R. (2020). Experimental investigation of the performance of biosurfactant to wettability alteration and interfacial tension (IFT) reduction in microbial enhanced oil recovery (MEOR). Petroleum Science and Technology, 38(3), 147-158. https://doi.org/10.1080/10916466.2019.1575863
Jadhav, S. B., Phugare, S. S., Patil, P. S., & Jadhav, J. P. (2011). Biochemical degradation pathway of textile dye Remazol red and subsequent toxicological evaluation by cytotoxicity, genotoxicity and oxidative stress studies. International Biodeterioration & Biodegradation, 65(6), 733-743. https://doi.org/10.1016/j.ibiod.2011.04.003
Jemil, N., Ben Ayed, H., Manresa, A., Nasri, M., & Hmidet, N. (2017). Antioxidant properties, antimicrobial and anti-adhesive activities of DCS1 lipopeptides from Bacillus methylotrophicus DCS1. BMC microbiology, 17(1), 1-11. https://doi.org/10.1186/s12866-017-1050-2
Jemil, N., Hmidet, N., Ayed, H. B., & Nasri, M. (2018). Physicochemical characterization of Enterobacter cloacae C3 lipopeptides and their applications in enhancing diesel oil biodegradation. Process Safety and Environmental Protection, 117, 399-407. https://doi.org/10.1016/j.psep.2018.05.018
Jemil, N., Hmidet, N., Manresa, A., Rabanal, F., & Nasri, M. (2019). Isolation and characterization of kurstakin and surfactin isoforms produced by Enterobacter cloacae C3 strain. Journal of Mass Spectrometry, 54(1), 7-18. https://doi.org/10.1002/jms.4302
Khopade, A., Biao, R., Liu, X., Mahadik, K., Zhang, L., & Kokare, C. (2012). Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination, 285, 198-204. https://doi.org/10.1016/j.desal.2011.10.002
Khubaib, M. A., Raza, Z. A., Abid, S., Nazir, A., & Tariq, M. R. (2021). Cell‐Free Culture Broth of Pseudomonas aeruginosa—an alternative source of biodispersant to synthetic surfactants for dyeing the polyester fabric. Journal of Surfactants and Detergents, 24(2), 343-355. https://doi.org/10.1002/jsde.12485
Kuyukina, M. S., Ivshina, I. B., Philp, J. C., Christofi, N., Dunbar, S. A., & Ritchkova, M. I. (2001). Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods, 46(2), 149-156. https://doi.org/10.1016/S0167-7012(01)00259-7
Liang, T. W., Wu, C. C., Cheng, W. T., Chen, Y. C., Wang, C. L., Wang, I. L., & Wang, S. L. (2014). Exopolysaccharides and antimicrobial biosurfactants produced by Paenibacillus macerans TKU029. Applied biochemistry and biotechnology, 172(2), 933-950. https://doi.org/10.1007/s12010-013-0568-5
Lima, R. A., Andrade, R. F., RodrÃguez, D. M., Araujo, H. W., Santos, V. P., & Campos-Takaki, G. M. (2017). Production and characterization of biosurfactant isolated from Candida glabrata using renewable substrates. African journal of microbiology research, 11(6), 237-244. https://doi.org/10.5897/AJMR2016.8341
Lima, T. M., Procópio, L. C., Brandão, F. D., Leão, B. A., Tótola, M. R., & Borges, A. C. (2011) Evaluation of bacterial surfactant toxicity towards petroleum degrading microorganisms. Bioresource Technology, 102(3),2957–2964. https://doi.org/10.1016/j.biortech.2010.09.109
López-Prieto, A., Vecino, X., Rodríguez-López, L., Moldes, A. B., & Cruz, J. M. (2020). Fungistatic and fungicidal capacity of a biosurfactant extract obtained from corn steep water. Foods, 9(5), 662. https://doi.org/10.3390/foods9050662
Luna, J. M., Rufino, R. D., Sarubbo, L. A., & Campos-Takaki, G. M. (2013). Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Colloids and surfaces B: Biointerfaces, 102, 202-209.https://doi.org/10.1016/j.colsurfb.2012.08.008
Maia, P. C. D. V. S., Rodríguez, D. M., de Souza, A. F., da Silva Andrade, R. F., & Campos-Takaki, G. M. (2022). Production of biosurfactant by Bacillus subtilis UCP 0999 using cassava wastewater (CWW) and waste frying oil (WFO) as renewable substrates. Research, Society and Development, 11(6), e17011628805-e17011628805. https://doi.org/10.33448/rsd-v11i6.28805
Manocha, M. S., San-Blas, G., & Centeno, S. (1980). Lipid composition of Paracoccidioides brasiliensis: possible correlation with virulence of different strains. Microbiology, 117(1), 147-154. https://doi.org/10.1099/00221287-117-1-147
Mendonça, R. S., Sá, A. V. P., Rosendo, L. A., dos Santos, R. A., do Amaral Marques, N. S. A., Souza, A. F., Rodríguez, D. M., & de Campos Takaki, G. M. (2021). Production of biosurfactant and lipids by a novel strain of Absidia cylindrospora UCP 1301 isolated from Caatinga soil using low-cost agro-industrial by-products. Brazilian Journal of Development, 7(1), 8300-8313.
Nakama, Y. (2017). ”Surfactants,” in Cosmetic Science and Technology. Amsterdam: Elsevier, 231–244.
Negin, C., Ali, S., & Xie, Q. (2017). Most common surfactants employed in chemical enhanced oil recovery. Petroleum, 3(2), 197-211. https://doi.org/10.1016/j.petlm.2016.11.007
Nunes, H. M. A. R., Vieira, I. M. M., Santos, B. L. P., Silva, D. P., & Ruzene, D. S. (2022). Biosurfactants produced from corncob: a bibliometric perspective of a renewable and promising substrate. Preparative Biochemistry & Biotechnology, 52(2), 123-134. https://doi.org/10.1080/10826068.2021.1929319
Pele, M. A., Ribeaux, D. R., Vieira, E. R., Souza, A. F., Luna, M. A., Rodríguez, D. M., Andrade, R. F. S., Alviano, D. S., Alviano, C. S., Bergter, E. B., Santiago, A. L. C. M. A. & Campos-Takaki, G. M. (2019). Conversion of renewable substrates for biosurfactant production by Rhizopus arrhizus UCP 1607 and enhancing the removal of diesel oil from marine soil. Electronic Journal of Biotechnology, 38, 40-48. https://doi.org/10.1016/j.ejbt.2018.12.003
Perfumo, A., Banat, I. M., & Marchant, R. (2018). Going green and cold: biosurfactants from low-temperature environments to biotechnology applications. Trends in biotechnology, 36(3), 277-289. https://doi.org/10.1016/j.tibtech.2017.10.016
Pinto, M. I. S., Campos Guerra, J. M., Meira, H. M., Sarubbo, L. A., & de Luna, J. M. (2022). A biosurfactant from Candida bombicola: its synthesis, characterization, and its application as a food emulsions. Foods, 11(4), 561. https://doi.org/10.3390/foods11040561
Purwasena, I. A., Astuti, D. I., Syukron, M., Amaniyah, M., & Sugai, Y. (2019). Stability test of biosurfactant produced by Bacillus licheniformis DS1 using experimental design and its application for MEOR. Journal of Petroleum Science and Engineering, 183, 106383. https://doi.org/10.1016/j.petrol.2019.106383
Rahman, P. K., Mayat, A., Harvey, J. G. H., Randhawa, K. S., Relph, L. E., & Armstrong, M. C. (2019). Biosurfactants and bioemulsifiers from marine algae. In The Role of Microalgae in Wastewater Treatment (pp. 169-188). Springer, Singapore. https://doi.org/10.1007/978-981-13-1586-2_13
Rocha e Silva, N. M. P., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2014). Screening of Pseudomonas species for biosurfactant production using low-cost substrates. Biocatalysis and Agricultural Biotechnology, 3(2), 132-139. https://doi.org/10.1016/j.bcab.2013.09.005
Rodríguez, D. M., de Souza Mendonça, R., de Souza, A. F., da Silva Ferreira, I. N., da Silva Andrade, R. F., & Campos-Takaki, G. M. (2022). Solid-state fermentation for low-cost production of biosurfactant by promising Mucor hiemalis UCP 1309. Research, Society and Development, 11(6), e25211628817-e25211628817. https://doi.org/10.33448/rsd-v11i6.28817
Rulli, M. M., Alvarez, A., Fuentes, M. S., & Colin, V. L. (2019). Production of a microbial emulsifier with biotechnological potential for environmental applications. Colloids and Surfaces B: Biointerfaces, 174, 459-466. 10.1016/j.colsurfb.2018.11.052. https://doi.org/10.1016/j.colsurfb.2018.11.052
Sajna, K. V., Sukumaran, R. K., Jayamurthy, H., Reddy, K. K., Kanjilal, S., Prasad, R. B., & Pandey, A. (2013). Studies on biosurfactants from Pseudozyma sp. NII 08165 and their potential application as laundry detergent additives. Biochemical Engineering Journal, 78, 85-92. https://doi.org/10.1016/j.bej.2012.12.014
Santiago, M. G., Lins, U. M. D. B. L., de Campos Takaki, G. M., da Costa Filho, L. O., & da Silva Andrade, R. F. (2021). Produção de biossurfactante por Mucor circinelloides UCP 0005 usando novo meio de cultura formulado com cascas de jatobá (Hymenaea courbaril L.) e milhocina. Brazilian Journal of Development, 7(5), 51292-51304. https://doi.org/10.34117/bjdv7n5-497
Santos, F., Freitas, K., Neto, J. C., Ana, G. F. S., Rocha-Leao, M. H., & Amaral, P. (2018). Tiger nut (Cyperus esculentus) milk byproduct and corn steep liquor for biosurfactant production by yarrowia lipolytica. Chemical Engineering Transactions, 65, 331-336. https://doi.org/10.3303/CET1865056
Santos, V. S. V., Silveira, E., & Pereira, B. B. (2018). Toxicity and applications of surfactin for health and environmental biotechnology. Journal of Toxicology and Environmental Health, Part B, 21(6-8), 382-399. https://doi.org/10.1080/10937404.2018.1564712
Sari, M., Kusharyoto, W., & Artika, I. M. (2014). Screening for biosurfactant-producing yeast: confirmation of biosurfactant production. Biotechnology, 13(3), 106.
Sarubbo, L. A., Maria da Gloria, C. S., Durval, I. J. B., Bezerra, K. G. O., Ribeiro, B. G., Silva, I. A., Twigg, M. S., & Banat, I. M. (2022). Biosurfactants: Production, properties, applications, trends, and general perspectives. Biochemical Engineering Journal, 108377. https://doi.org/10.1016/j.bej.2022.108377
Satpute, S. K., Banpurkar, A. G., Dhakephalkar, P. K., Banat, I. M., & Chopade, A. B (2010) Methods for investigating biosurfactants and bioemulsifiers: a review. Crit Rev Biotechnol 1(1):1–18. https://doi.org/10.3109/07388550903427280
Thavasi, R., & Banat, I. M. (2019). Downstream processing of microbial biosurfactants. In Microbial biosurfactants and their environmental and industrial applications (pp. 16-27). CRC Press.
Tiquia, S. M., Tam, N. F. Y., & Hodgkiss, I. J. (1996). Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environmental pollution, 93(3), 249-256. https://doi.org/10.1016/S0269-7491(96)00052-8
Uzoigwe, C., Burgess, J. G., Ennis, C. J., & Rahman, P. K. (2015). Bioemulsifiers are not biosurfactants and require different screening approaches. Frontiers in microbiology, 6, 245. https://doi.org/10.3389/fmicb.2015.00245
Venkataraman, S., Rajendran, D. S., Kumar, P. S., Vo, D. V. N., & Vaidyanathan, V. K. (2021). Extraction, purification and applications of biosurfactants based on microbial-derived glycolipids and lipopeptides: a review. Environmental Chemistry Letters, 1-22. https://doi.org/10.1007/s10311-021-01336-2
Yorke, K., Potanin, A., Jogun, S., Morgan, A., Shen, H., & Amin, S. (2021). High‐performance sulphate‐free cleansers: Surface activity, foaming and rheology. International Journal of Cosmetic Science, 43(6), 636-652. https://doi.org/10.1111/ics.12740
You, J., Yang, S. Z., & Mu, B. Z. (2015). Structural characterization of lipopeptides from Enterobacter sp. strain N18 reveals production of surfactin homologues. European Journal of Lipid Science and Technology, 117(6), 890-898. https://doi.org/10.1002/ejlt.201400386
Youssef, N. H., Duncan, K. E., Nagle, D. P., Savage, K. N., Knapp, R. M., & McInerney, M. J. (2004). Comparison of methods to detect biosurfactant production by diverse microorganisms. Journal of microbiological methods, 56(3), 339–347. https://doi.org/10.1016/j.mimet.2003.11.001
Zhu, Z., Zhang, B., Cai, Q., Ling, J., Lee, K., & Chen, B. (2020). Fish waste based lipopeptide production and the potential application as a bio-dispersant for oil spill control. Frontiers in bioengineering and biotechnology, 8, 734. https://doi.org/10.3389/fbioe.2020.00734
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Tainã Crisia de Souza Fonseca ; Dayana Montero Rodríguez; Rafael de Souza Mendonça; Adriana Ferreira de Souza; Luiz Oliveira Costa ; Galba Maria de Campos-Takaki
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.