Pharmaceutical innovations of dapsone in the treatment of pediatric leprosy: an integrative review

Authors

DOI:

https://doi.org/10.33448/rsd-v11i14.36645

Keywords:

Dapsone; Children; Pharmaceutical innovations.

Abstract

Leprosy is an ancient disease, which is still endemic in developing countries, affecting from childhood to old age. Dapsone is a synthetic sulfone that is an anti-inflammatory and antibiotic agent, which is part of the multidrug regimen suggested by the WHO for the treatment of leprosy. Currently, there are studies of new pharmaceutical forms of dapsone proposed for the treatment of leprosy that are under development, to propose improvement and optimization of this pharmacological therapy. However, the pediatric population still suffers from the lack of specific and adequate treatment. The objective of this article is to describe and report pharmaceutical forms of dapsone, in order to propose a better pharmacological choice, based on research that improves the therapy of pediatric leprosy. As a bibliographic research methodology, the integrative review method was used, in the EBSCO (Business Source Complete), Science Direct, PubMed and Google Scholar databases, using the descriptors ''Leprosy''; ''Pharmaceutical preparations'' and “Dapsone'' and the Boolean operator ''AND'' as a search aid, selecting articles that were between the period 2010 to 2022. The present study resulted in the identification of pharmaceutical innovations of dapsone, demonstrating a high therapeutic potential, helping to improve the drug, such as increasing its solubility, bioavailability, absorption, permeability, dissolution and decreased toxicity. Concluding, therefore, satisfactory results of therapeutic innovations to assist in the adherence of pediatric patients to leprosy. In short, future studies and greater visibility of this population are proposed.

References

Alarie, H., Candidate, M., & Friciu, M. (2018) Stability of dapsone in extemporaneously compounded oral suspensions. The Canadian Journal of Hospital Pharmacy, 71(2). https://doi.org/10.4212/cjhp.v71i2.1867

Balai, M., Agarwal, C., Gupta, L. K., Khare, A. K., & Mittal, A. (2017) Current scenario of childhood leprosy at a tertiary care hospital of Southern Rajasthan. Indian Online Dermatol J, 8(6), 494-495. https://doi.org/10.4103/idoj.IDOJ_8_17

Bardin, L. (2016) Análise de conteúdo. Câmara brasileira do livro

Barreto, J. G., Frade, M. A. C., Bernardes, F., da Silva, M. B., Spencer, J. S., & Salgado, C. G. (2017). Leprosy in children. Current Infectious Disease Reports, 19(6). https://doi.org/10.1007/s11908-017-0577-6

Barreto, J. G., Bisanzio, D., Guimarães, L., Spencer, J. S., Vazquez-Prokopec, G. M., Kitron, U., & Salgado, C. G. (2014) Análise espacial destacando a transmissão da hanseníase na primeira infância em um município hiper endêmico da Amazônia brasileira. PLoS negligenciou doenças tropicais, 8(2). https://doi.org/10.1371/journal.pntd.0002665

Borges V. R., Simon A., Sena A. R., Cabral L., & de Sousa V. P. (2013) Nanoemulsion containing dapsone for topical administration: a study of in vitro release and epidermal permeation. Int J Nanomedicine,8.535-44. https://doi.org/10.2147/IJN.S39383

Cé, R., Jornada, D. S., De Marchi, J. G. B., Guterres, S. S., & Pohlmann, A. R. (2019) Dry-powder of chitosan-coated lipid-core nanocapsules containing dapsone: development, laser diffraction characterization and analytical quantification. Drug Analytical Research, 3(1), 10–15. https://doi.org/10.22456/2527-2616.92750

Chappa, P., Arthanareeswari, M., Voguri, R. S., Dey, A., Ghosal, S., & Mohamed, A. B. (2018). Drug-polymer co-crystal of dapsone and polyethylene glycol: an emerging subset in pharmaceutical co-crystals. Crystal Growth & Design.18(12),7590–7598. https://doi.org/10.1021/acs.cgd.8b01397

Chaves, L. L., Silveri, A., Vieira, A. C. C., Ferreira, D., Cristiano, M. C., Paolino, D., Di Marzio, L., Lima, S. C., Reis, S., Sarmento, B., & Celia, C. (2019). Ph-Responsive chitosan based hydrogels affect the release of dapsone: design, set-up, and physicochemical characterization. Int J Biol Macromol ,133:1268–79. https://doi.org/10.1016/j.ijbiomac.2019.04.178

Chaves, L. L., Vieira A. C. C., Ferreira, D., Sarmento, B., & Reis, S. (2015) Rational and precise development of amorphous polymeric systems with dapsone by response surface methodology. Int J Biol Macromol, 81:662–71. https://doi.org/10.1016/j.ijbiomac.2015.08.009

Chaves, L., Lima, S. A. C., Vieira A. C., Barreiros, L., Segundo M. A., Ferreira D., Sarmento B., & Reis S. (2017) Ph-sensitive nanoparticles for improved oral delivery of dapsone: risk assessment, design, optimization and characterization. Nanomedicine (Lond). 12(16),1975-1990. https://doi.org/10.2217/nnm-2017-0105

Ivanovska, V., Rademaker, C. M. A., Dijk, L. V., & Mantel-Teeuwisse, A. K. (2014) Pediatric drug formulations: A Review Of Challenges And Progress. Pediatrics, 134(2) 361–72. https://doi.org/10.1542/peds.2013-3225

Li, H., Xie, Y., Xue, Y., Zhu, P., & Zhao, H. (2021) Comprehensive insight into solubility, dissolution properties and solvation behaviour of dapsone in co-solvent solutions, Journal of Molecular Liquids, 341. https://doi.org/10.1016/j.molliq.2021.117403

Li, W., Shi, P., Jia, L., Zhao, Y., Sun, B., Zhang, M., Gong, J., & Tang, W. (2020). Eutectics and salt of dapsone with hydroxybenzoic acids: binary phase diagrams, characterization and evaluation. Journal of pharmaceutical sciences, 109(7), 2224–2236. https://doi.org/10.1016/j.xphs.2020.04.003

Mahore, J., Shelar, A., Deshkar, S., & More, G. (2021) Conceptual design and optimization of self microemulsifying drug delivery systems for dapsone by using Box-Behnken design. J Res Pharm, 25(2), 179-195. https://doi.org/10.29228/jrp.9

Mendes, K. D. S., Silveira, R. C. de C. P., & Galvão, C. M. (2019). Use of the bibliographic reference manager in the selection of primary studies in integrative reviews. Texto & Contexto - Enfermagem, 28(0). https://doi.org/10.1590/1980-265x-tce-2017-0204

Molinelli, E., Paolinelli,M., Campanat, A., Brisigotti, V., & Offdani,A. (2019) Metabolic, pharmacokinetic, and toxicological issues surrounding dapsone, Expert Opinion on Drug Metabolism & Toxicology, 5,(367-379). https://doi.org/10.1080/17425255.2019.1600670

Monteiro, L. M., Lione, V. F., Carmo F. A. Do., do Amaral, L. H., da Silva, J. H., Nasciutti, L. E., Rodrigues, C. R., Castro H. C., de Sousa, V. P., & Cabral, L. M. (2012) Development and characterization of a new oral dapsone nanoemulsion system: permeability and in silico bioavailability studies. International Journal Of Nanomedicine, 7: 5175–5182. https://doi.org/10.2147/IJN.S36479

Oliveira, J. D. C. P., Marinus, M. W. de L. C., & Monteiro, e. M. L. M. (2020) Práticas de atenção à saúde das crianças e adolescentes com hanseníase: discursos de profissionais, Rev. Gaúcha Enferm, 41. https://doi.org/10.1590/1983-1447.2020.20190412

Ramos, J. M., Reyes, F., Lemma, D., Tesfamariam, A., Belinchón, I., & Górgolas, M. (2014). The burden of leprosy in children and adolescents in rural southern Ethiopia. Paediatrics and international child health, 34(1), 24–28. https://doi.org/10.1179/2046905513y.0000000073

Ranjbar, M., Khazaeli, P., Pardakhty, A., Tahamipour, B., & Amanatfard, A. (2019) Preparation of polyacrylamide/polylactic acid co-assembled core/shell nanofibers as designed beads for dapsone in vitro efficient delivery. Artif Cells, Nanomedicine Biotechnol,47:917–26. https://doi.org/10.1080/21691401.2019.1577881

Rumbaut, C. R., Gascón, H. L. C., Ruiz-Fuentes, J. L., Fundora, F. M. P., E Albajés, C. R. R., Henao-Martínez, A. A. F., Franco-Paredes, C., & Escobedo, A. A. (2021) Leprosy in children in cuba: epidemiological and clinical description of 50 cases from 2012–2019. Plos Negl Trop Dis, 15(10). https://doi.org/10.1371/journal.pntd.0009910

Santos, S. D., Penna, G. O., Costa, M. Da C. N., Natividade, M. S., & Texeira, M. G. (2016) Leprosy in children and adolescents under 15 years old in an urban centre in Brazil. Memórias Do Instituto Oswaldo Cruz, 111(6),359-364. https://doi.org/10.1590/0074-02760160002

Schneider, P. B., & Freitas, B. H. B. M (2018) Leprosy trends in children under 15 years of age in Brazil, 2001-2016, Cad Saude Publica,12(34),3. https://doi.org/10.1590/0102-311X00101817

Schneider-Rauber, G., Argenta, D. F., & Caon, T. (2020). Emerging technologies to target drug delivery to the skin – the role of crystals and carrier-based systems in the case study of dapsone. Pharmaceutical Research, 37(12). https://doi.org/10.1007/s11095-020-02951-4

Sindhuri, P., & Supraneni, J. R. (2021) Preparation, characterization and evaluation of statistically optimized dapsone loaded nano crystals. Nveo-Natural Volatiles & Essential Oils Journal, 5492-5505. https://www.nveo.org/index.php/journal/article/view/4630

Souza, M. T. d., Silva, M. D. d., & Carvalho, R. d. Revisão integrativa: o que é? Como fazer isso? Einstein (São Paulo), 8 (1) https://doi.org/10.1590/S1679-45082010RW1134

Tiwari, R., Tiwari, G., Wal, P., Wal, A., & Maurya, P. (2018) Development, characterization and transdermal delivery of dapsone and an antibiotic entrapped in ethanolic liposomal gel for the treatment of lapromatous leprosy, The Open Nanomedicine Journal, 5, 1-15. https://doi.org/10.2174/1875933501805010001

Vieira, A. C., Chaves, L.L., Pinheiro, M., Ferreira, D., Sarmento, B., & Reis, S. (2016) Design and statistical modeling of mannose-decorated dapsone-containing nanoparticles as a strategy of targeting intestinal M-cells. International Journal of Nanomedicine,3(11),2601-17. https://doi.org/10.2147/IJN.S104908

Published

05/11/2022

How to Cite

PASTOR, M. R. de M.; OLIVEIRA, J. S. de; VASCONCELOS, T. C. L. de . Pharmaceutical innovations of dapsone in the treatment of pediatric leprosy: an integrative review. Research, Society and Development, [S. l.], v. 11, n. 14, p. e528111436645, 2022. DOI: 10.33448/rsd-v11i14.36645. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36645. Acesso em: 15 jan. 2025.

Issue

Section

Health Sciences