Co-inoculation of peanut (Arachis hypogaea L.) with Bradyrhizobium and Azospirillum promotes greater tolerance to drought

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.3690

Keywords:

diazotrophic bacteria; biological nitrogen fixation; rhizobacteria; water restriction.

Abstract

The use of growth-promoting rhizobacteria can be a management strategy to mitigate the effects of water deficiency on plant growth and development by modifying physiological metabolism and promoting greater drought tolerance. This study aimed to investigate the effects of seed inoculation with Bradyrhizobium japonicum and Azospirillum brasilense alone and combined on the growth and induction of tolerance of peanut plants (Arachis hypogaea L., cv. RUNNER IAC 886) to water restriction. The experimental design adopted was that of random blocks in a 3 × 4 factorial scheme, consisting of three levels of irrigation [100% of the soil's water retention capacity (control), 50% of the control (moderate stress) and 25% of the control (severe stress)] and by four inoculation treatments [control (without inoculation), inoculation with B. japonicum, inoculation with A. brasilense and seed co-inoculation with B. japonicum and A. brasilense, with four replications. Water restriction was imposed at the beginning of the appearance of the gynophore, 40 days after the emergence of the plants, for a period of 18 days. Plants exposed to conditions of severe water restriction reduced plant height (32%), leaf area (44%), root volume (47%), shoot dry matter (35%) and root dry matter (37%) when compared to plants under control conditions. After 18 days of exposure of the plants to water restriction, the relative water content, membrane integrity, plant height, leaf area, root volume and dry matter of shoots and roots were measured. Inoculation with B. japonicum and A. brasilense alone or in combination improved the cell membrane integrity by 7% and reduced the water losses of peanut leaves exposed to water deficiency by 8%. Inoculation with A. brasilense alone or in combination with B. japonicum resulted in higher plant height (21%) and higher root dry matter (23%) when compared to plants not inoculated under severe water restriction conditions. Our results suggest that inoculation with B. japonicum and A. brasilense in isolation or in combination can mitigate the adverse effects of water deficiency, maintaining the growth and dry matter accumulation of peanut plants when exposed to water restriction. Therefore, the use of these rhizobacteria in the peanut cropping can be an alternative of management in conditions subject to the occurrence of water deficiency to confer greater tolerance of the plants to drought.

Author Biographies

Gabriela da Silva Freitas, Universidade Estadual de Mato Grosso do Sul

Aluna do Curso de Agronomia da Universidade Estadual de Mato Grosso do Sul (UEMS).

Giselle Feliciani Barbosa, Universidade Estadual de Mato Grosso do Sul

Profa. do Programa de Pós-Graduação em Agronomia, área de concentração Sustentabilidade na Agricultura, da Universidade Estadual de Mato Grosso do Sul (UEMS).

Alan Mario Zuffo, Universidade Federal do Mato Grosso do Sul

Professor do Curso de Agronomia da Universidade Federal do Mato Grosso do Sul – UFMS, Chapadão do Sul, MS, Brasil

Fábio Steiner, Universidade Estadual de Mato Grosso do Sul

Prof. do Programa de Pós-Graduação em Agronomia, área de concentração Sustentabilidade na Agricultura, da Universidade Estadual de Mato Grosso do Sul (UEMS).

References

Abbasi, S.; Zahedi, H.; Sadeghipour, O. & Akbari, R. (2013). Effect of plant growth promoting rhizobacteria (PGPR) on physiological parameters and nitrogen content of soybean grown under different irrigation regimes. Research on Crops, 14(3), 798-803.

Agami, R. A.; Medani, R. A.; Abd El-Mola, I. A. & Taha, R. S. (2016). Exogenous application with plant growth promoting rhizobacteria (PGPR) or proline induces stress tolerance in basil plants (Ocimum basilicum L.) exposed to water stress. International Journal of Environmental & Agriculture Research, 2(5),78-92.

Arzanesh, M. H.; Alikhani, H. A.; Khavazi, K.; Rahimian, H. A. & Miransari, M. (2011). Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World Journal of Microbiology and Biotechnology, 27(2),197-205.

Bai, Y.; Zhou-Xiao, M. & Smith, D. L. (2003). Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Science, 43(5),1774-1781.

Barrs, H. D. (1968). Effect of cycle variations in gas exchange under constant environmental conditions on the ratio of transpiration to net photosynthesis. Physiologia Plantarum, 21(5),918-929.

Benincasa, M. P. M. (2003). Análise de crescimento de plantas: noções básicas. Jaboticabal: FUNEP.

Bulegon, L. G.; Rampim, L.; Klein, J.; Kestring, D.; Guimarães, V. F.; Battistus, A. G. & Inagaki, A. M. (2016). Componentes de produção e produtividade da cultura da soja submetida à inoculação de Bradyrhizobium e Azospirillum. Terra Latinoamericana, 34(2),169-176.

Bulegon, L. G.; Klein, J.; Rampim, L.; Guimarães, V. F.; Battistus, A. G. & Kestring, D. (2014) Desenvolvimento inicial de plântulas de soja inoculadas e co-inoculadas com Azospirilllum brasilense e Bradyrhizobium japonicum. Journal of Agronomic Sciences, 3(1),26-37.

Bulegon, L. G.; Guimarães, V. F.; Klein, J.; Batisttus, A. G.; Inagaki, A. M.; Offmann, L. C. & Souza, A. K. P. (2017) Enzymatic activity, gas exchange and production of soybean co-inoculated with Bradyrhizobium japonicum and Azospirillum brasilense. Australian Journal of Crop Science, 11(7),888-896.

Casaroli, D. & Lier, Q. J. (2008) Critérios para determinação da capacidade de vaso. Revista Brasileira de Ciência do Solo, 32(1),59-66.

Chibeba, A. M.; Guimarães, M. F.; Brito, O. R.; Nogueira, M. A.; Araujo, R. S. & Hungria, M. (2015). Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. American Journal of Plant Sciences, 6(10),641-1649.

Companhia Nacional de Abastecimento - CONAB. (2020). Levantamento da safra 2019/2020: grãos. Brasília: Conab.

Curá, J. A.; Franz, D. R.; Filosofía, J. E.; Balestrasse, K. B. |& Burgueño, L. E. (2017). Inoculation with Azospirillum sp. and Herbaspirillum sp. bacteria increases the tolerance of maize to drought stress. Microorganisms, 5(3),e41.

Ferreira, D. F. (2014). Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38(2),109-112 .

Fipke, G. M.; Conceição, G. M.; Grando, L. F.; Teleken, L.; Nunes, R. L.; Ubirajara, R. & Martin, T. N. (2016). Co-inoculation with diazotrophic bacteria in soybeans associated to urea topdressing. Ciência e Agrotecnologia, 40(5),522-533.

Ferrari-Neto, J.; Costa, C. H. M. & Castro, G. S. A. (2012). Ecofisiologia do amendoim. Scientia Agraria Paranaensis, 11(4),1-13.

Fukami, J.; Cerezini, P. & Hungria, M. (2018). Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express, 8(73),1-12.

Gusain, Y. S.; Singh, U. S. & Sharma, A. K. (2015). Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). African Journal of Biotechnology, 14(9),764-773.

Hungria, M.; Nogueira, M. A. (2013). Efeitos da co-inoculação. Cultivar Grandes Culturas, 170(1),40-41.

Hungria, M.; Nogueira, M. A. & Araujo, R. S. (2013). Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biology Fertility of Soils, 49(7),791-801.

Inagaki, A. M.; Guimarães, V. F.; Rodrigues, L. F. O. S.; Silva, M. B.; Diamante, M. S.; Rampim, L.; Mioranza, T. M. & Duarte-Júnior, J. B. (2014). Phosphorus fertilization associated to inoculation of maize with diazotrophic bacteria. African Journal of Agricultural Research, 9(48),3480-3487.

Lutts, S.; Kinet, J. M. & Bouharmont, J. (1996). Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. Plant Growth Regulation, 19(9):207-218.

Mantovani, D.; Veste, M.; Boldt-Burisch, K.; Fritsch, S.; Koning, L.A. & Freese, D. (2015). Carbon allocation, nodulation, and biological nitrogen fixation of black locust (Robinia pseudoacacia L.) under soil water limitation. Annals of Forest Research, 58(2),259-274.

Naghavi, M. R.; Pour-Aboughadareh, A. & Khalili, M. (2013). Evaluation of drought tolerance indices for screening some of corn (Zea mays L.) cultivars under environmental conditions. Notulae Scientia Biologicae, 5(3),388-393.

Nakagawa, J. & Rosolem, C. A. (2011). O amendoim: Tecnologia de produção. Botucatu: FEPAF.

Naveed, M.; Hussain, M. B.; Zahir, Z. A.; Mitter, B. & Sessitsch, A. (2014). Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regulation, 73(2),121-131.

Patanè, C.; Saita, A. & Sortino, O. (2013). Comparative effects of salt and water stress on seed germination and early embryo growth in two cultivars of sweet sorghum. Journal of Agronomy and Crop Science, 199(1),30-37.

Pereira, J. W. L.; Melo-Filho, P. A.; Albuquerque, M. B.; Nogueira, R. J. M. C. & Santos, R. C. (2012). Mudanças bioquímicas em genótipos de amendoim submetidos a déficit hídrico moderado. Revista Ciência Agronômica, 43(4), p. 766-773.

Pereira, A. S.; Shitsuka, D.M.; Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM.

Perrig, D.; Boiero, L.; Masciarelli, O.; Penna, C.; Cassán, F. & Luna, V. (2007). Plant growth promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and their implications for inoculant formulation. Applied Microbiology and Biotechnology, 75(5),1143-1150.

Petrović, G.; Jovičić, D.; Nikolić, Z.; Tamindžić, G.; Ignjatov, M.; Milošević, D. & Milošević, B. (2016). Comparative study of drought and salt stress effects on germination and seedling growth of pea. Genetika, 48(1),373-381.

Pimentel, C. (2004). A relação da água com a planta. Seropédica, EDUR.

Pinheiro, C. & Chaves, M. M. (2011). Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62(3),869-882.

Martins, R. (2013). O agronegócio do amendoim no Brasil. Brasília: Embrapa, 585 p.

Silva, E. R.; Busch, A.; Zuffo, A. M. & Steiner, F. (2017). Coinoculação de Bradyrhizobium japonicum e Azospirillum brasilense em sementes de amendoim de diferentes tamanhos. Revista de Agricultura Neotropical, 4(4),93-102.

Silva, E. R.; Zoz, J.; Oliveira, C. E. S.; Zuffo, A. M.; Steiner, F.; Zoz, T. & Vendruscolo, E. P. (2019). Can co-inoculation of Bradyrhizobium and Azospirillum alleviate adverse effects of drought stress on soybean (Glycine max L. Merrill.)? Archives of Microbiology, 201(3),325–335.

Sousa, D. M. G. &Lobato, E. (2004). Cerrado: correção do solo e adubação. Brasília: Embrapa Informação Tecnológica.

Taiz, L., Zeiger, E., Møller, I.M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. Porto Alegre: Artmed.

Teixeira, P. C.; Donagemma, G. K.; Fontana, A. & Teixeira, W. G. (2017). Manual de métodos de análise de solo. 3ª ed. Brasília, DF: Embrapa Solos.

Vieira, E. A.; Silva, M. G.; Moro, C. F. & Laura, V. A. (2017). Physiological and biochemical changes attenuate the effects of drought on the Cerrado species Vatairea macrocarpa (Benth.) Ducke. Plant Physiology and Biochemistry, 115(4),472-483.

Vurukonda, S. S. K. P.; Vardharajula, S.; Shrivastava, M. & Skz, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184(1),13-24.

Zoz, T.; Steiner, F.; Guimarães, V. F.; Castagnara, D. D.; Meinerz, C. C.; Fey, R. (2013). Peroxidase activity as an indicator of water deficit tolerance in soybean cultivars. Bioscience Journal, 29(5),1664-1671.

Published

28/04/2020

How to Cite

FREITAS, G. da S.; BARBOSA, G. F.; ZUFFO, A. M.; STEINER, F. Co-inoculation of peanut (Arachis hypogaea L.) with Bradyrhizobium and Azospirillum promotes greater tolerance to drought. Research, Society and Development, [S. l.], v. 9, n. 7, p. e69973690, 2020. DOI: 10.33448/rsd-v9i7.3690. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/3690. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences