Characterization of high temperatures and identification of times susceptible to stenospermocarpia in 'Palmer' mangoes

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.3734

Keywords:

Maximum temperature; Stenospermocarp fruits; Manga palmer; Normal distribution.

Abstract

The agribusiness on the São Francisco Valley stands out in the national agribusiness by the mango and grape production, however it has been increasing the vulnerability to extreme weather events associated with thermal rises in Palmer mango crops. This cultivar has been producing stenospermocarp fruits with great frequency when the flowering and initial development of the fruits coincide with to higher temperatures. Thus,  this study, capable of profiling the occurrence of high temperatures in the region may be important to accurately determine production risks associated with thermal extremes throughout the year, aimed to characterize the maximum air temperature on a monthly scale through descriptive statistical elements, as well as to identify the period with the greatest potential for inducing stonepermocarp in cv. Palmer in the Sub-Middle region of the São Francisco Valley. For graphical analysis of the data series, a histogram of frequency of the maximum observed temperatures was constructed each month, which was superimposed by the Normal probability density function. The following descriptive statistical elements were used: mean, mode and median, variance and standard deviation. Asymmetry measures were also used, such as the asymmetry coefficient and kurtosis measures such as the kurtosis coefficient. The use of the mean alone to feature the São Francisco Valley temparatures, can bring inconsistency and fragility, due to a considerable degree of uncertainty and inadequacy in the thermal characterization. The use of the descriptive statistical elements used in this study had been proved a viable tool for the thermal extremes features of the São Francisco Valley. November tends to be characterized as the month of greatest risk when the mango cv. Palmer, with observation of the extreme maximum temperatures, showing the highest monthly average, 34.1°C and frequent occurrence of temperatures of 37.5°C, therefore the month with the highest risk to ocurr stenospermocarp fruits.

References

Araújo, GJF & Silva, MM. (2013). Crescimento econômico no semiárido brasileiro: o caso do polo frutícola Petrolina/Juazeiro. Caminhos da Geografia, 14(46), 246-264.

Ben-Gai, T, Bittan, A, Manes, A, Alpert, P & Rubin, S. (1998). Spatial and temporal changes in rainfall frequency distribution patterns in Israel. Theoretical and Applied Climatology, 61(3),177-190.

Blain, GC, Kayano, MT, Camargo, MBP & Lulu, J. (2009). Variabilidade amostral das séries mensais de precipitação pluvial em duas regiões do Brasil. Revista Brasileira de Meteorologia, 24(1), 1-11.

Blain, GC, Piedade, SMS, Camargo, MBP & Giarolla, A. (2007). Distribuição temporal da precipitação pluvial mensal observada no Posto Meteorológico do Instituto Agronômico, em Campinas, SP. Bragantia, 66(2), 347-355.

Blain, GC. (2005). Avaliação e adaptação do Índice de Severidade de Seca de Palmer (PDSI) e do Índice Padronizado de Precipitação (SPI) às condições climáticas do Estado de São Paulo. (Dissertação de mestrado) Instituto Agronômico, Campinas, SP, Brasil.

Brunetti, M, Maugeri, M & Nanni, T. (2001). Changes in total precipitation, rainy days and extreme events in northeastern Italy. International Journal of Climatology, Bracknell, 21, 861-871.

Hedhly, A. (2011). Sensitivity of flowering plant gametophytes to temperature fluctuations. Environmental and Experimental Botany, 74, 9-16. https://doi.org/10.1016/j.envexpbot.2011.03.016

Issarakraisila, M & Considine, JA. (1994). Effects of temperature on pollen viability in mango cv. ‘Kensington’. Annals of Botany, 73, 231-240.

Juras, J. (1994). Some common features of probability distributions for precipitation. Theoretical and Applied Climatology, 49, 69-76.

Katz, RW. (1991). Towards a statistical paradigm for climate change. Preprints. Anais da Conference on Appied Climatology, Boston, EUA, 7.

Lima Filho, JM, Assis, JS, Teixeira, AHC, Cunha, GAP & Castro Neto, MT. (2002). Ecofisiologia, in: Genu, P.J.C., Pinto, C.A. Q. (Eds.), A Cultura da Mangueira. Embrapa Informação Tecnológica, Brasília, Brasil. p. 243-257.

Nunes, LH & Calbete, NO. (2000). Variabilidade pluviométrica no Vale do Paraíba Paulista. Anais em Congresso Brasileiro de Meteorologia, Sociedade Brasileira de Meteorologia, (p. 3987- 3994). Rio de Janeiro.

Pereira, AS et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Pittock, AB, Frakes, LA, Jessen, D, Peterson, JA & Zillman, JW. (1978). Climatic change and variability: a southern perspective. Cambridge: University Press, p.455.

Portela, GLF, Lima, MG, Padua, LEM, Sinimbu Neto, FA & Martins, ABG. (2008). Zoneamento agroclimático da cultura da mangueira no Estado do Piauí. Revista Brasileira de Fruticultura. 30(4), 1036-1039.

Ramirez, F & Davenport, TL. (2010). Mango (Mangifera indica L.) flowering physiology. Scientia Horticulturae. 126, 65-72.

Ropelewski, CF & Halpert, MS. (1996). Quantifying Southern- Oscillation precipitation relationships. Journal of Climate, 9, p.1043-1059.

Sindelar, FCW, Conto, SM & Ahlert, L. (2014). Teoria e prática em estatística para cursos de graduação. (1a ed.). Lajeado: Editora da Univates.

Soule, J. (1985). Glossary for Horticultural Crops. Wiley, New York.

Thingreingam Irenaeus, KS & Mitra, SK. (2014). Understanding the pollen and ovule characters and fruit set of fruit crops in relation to temperature and genotype – a review. Journal of Applied Botany and Food Quality, 87, 157-167. https://doi.org/10.5073/JABFQ.2014.087.023

Yaacoubi, A, Jaouhari, N, Bourioug, M, Youssfi, L, Cherroud, S,

Bouabid, R, Chaoui, M & Abouabdillah, A. (2019). Potential vulnerability of Moroccan apple orchard to climate Change-induced phenological perturbations: effects on yields and fruit quality. Environmental and Experimental Botany, 64, 377-387. https://doi.org/10.1016/j.envexpbot.2008.01.003

Wilks, DS. (1995). Theoretical probability distributions. In: STATISTICAL methods in the atmospheric sciences. San Diego: Academic Press, p. 96-93.

Published

18/05/2020

How to Cite

SANTIAGO, E. J. P.; FREIRE, A. K. da S.; CUNHA, A. L. X.; CANTALICE, J. R. B.; MOUCO, M. A. do C.; CUNHA FILHO, M.; GOMES-SILVA, F.; SILVA, A. S. A. da; OLIVEIRA, G. M. de. Characterization of high temperatures and identification of times susceptible to stenospermocarpia in ’Palmer’ mangoes. Research, Society and Development, [S. l.], v. 9, n. 7, p. e383973734, 2020. DOI: 10.33448/rsd-v9i7.3734. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/3734. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences