Attractiveness and palatability of hydrolyzed feather protein for juvenile tambacu (Colossoma macropomum × Piaractus mesopotamicus)

Authors

DOI:

https://doi.org/10.33448/rsd-v11i16.37352

Keywords:

Alternative food; Aquaculture; Feeding behavior; Nutrition.

Abstract

The study was with the objective of determining the attractiveness and palatability of inclusion levels of hydrolyzed feather protein in diets for juvenile tambacu (Colossoma macropomum × Piaractus mesopotamicus). Six diets were formulated, according to the nutritional requirements of the species: positive control without feather hydrolysate (FPH0), 1% feather protein hydrolysate (FPH1), 2% feather protein hydrolysate (FPH2), 3% feather protein hydrolysate (FPH3), 4% feather protein hydrolysate (FPH4), and 5% feather protein hydrolysate (FPH5). For the test, 12 fingerlings with an average weight of 9.82 ± 0.74 g, distributed in 12 aquariums with volume of 20 liters and fed twice a day, at 10 am and 3 pm, with a previous selection of the diets offered, for a period of six days. In each feeding, 20 pellets were offered, and the events were filmed for three minutes, during which the following behaviors were observed: capture time of the first pellet (seconds), rejection of the pellet after capture, approach without capture, and pellets consumed, and later the palatability index was calculated, according to the equation of Kasumyan and Morsi (1996). The analyzes showed that all diets containing feather protein hydrolysate had a positive palatability index, in which they provided an increase in feed consumption in relation to the diet containing fishmeal. The FPH5 diet had the best palatability index (11.42%). Therefore, feather protein hydrolysate can be used in tambacu diets without altering palatability and feeding behavior.

References

Alves, R. S. A., Oliveira, S. R., Luczinski, T. G., Paulo, I. G. P., Boscolo, W. R., Bittencourt, F., & Signor, A. (2019b). Palatability of protein hydrolysates from industrial byproducts for Nile tilapia juveniles. Animals, 9, 2-11. https://doi.org/10.3390/ani9060311.

Alves, D.R.S.; Oliveira, S.R.; Luczinski, T.G.; Boscollo, W.R.; Bittencourt, F.; Signor, A.; & Detsch, D.T. (2020a) Atração e palatabilidade de hidrolisados de proteína líquida para jovens de tilápia do Nilo. Pesquisa de Aquicultura, 51, 4 pp 1681-1688 DOI: https://doi.org/10.1111/are.14514

Alves, D.R. S., Oliveira, S.R., Sosa, B; Boscolo, W.R.; Signor, A., & Bittencourt, F. (2020b). Compelling palatability of flavoring Atractus AQVA® for Nile tilapia juveniles. Latin American Journal of Aquatic Research. http://dx.doi.org/10.3856/vol48-issue2-fulltext-2355.

Arana, L.V. Princípios químicos da qualidade de água em aquicultura: uma revisão para peixes e camarões. 2.ed. Florianópolis: Universidade Federal de Santa Catarina, 2004. 231p.

Baldisseroto, B. Fisiologia de peixes aplicada à piscicultura. Santa Maria: Universidade Federal de Santa Maria 2002. 212 p.

Boscolo, W.R.; Meurer, F.; Feiden, A.; Hayashi, C. Reidel, A.; Genteline, A. L. 2005. Farinha de vísceras de aves em rações para a tilápia do Nilo (Oreochromis niloticus) na fase de reversão sexual. Revista Brasileira de Zootecnia, v.34, p.373-377.

Broggi, J.A., B. Wosiak, J. Uczay, M.L. Pessatti & T.E.H.P. Fabregat. 2017. Hidrolisado proteico de resíduo de sardinha como atrativo alimentar para juvenis de jundiá. Arq. Bras. Med. Vet. Zootec., 69(2): 505-512.

Cyrino, JEP, Bicudo, AJA, Sado, RY, Borghesi, R. e Dairiki, J.K. (2010). A piscicultura e o ambiente - o uso de alimentos ambientalmente corretos em piscicultura. Revista Brasileira de Zootecnia, 39 ,68-87. https: //doi.org/10.1590/S1516-35982 01000 1300009

Chotikachinda, R., C. Tantikitti, S. Benjakul, T. Rustad& E. Kumarnsit. 2013. Production of protein hydrolisates from skipjack tuna Katsuwonus pelamis viscera as feeding attractants for Asian seabass Lates calcarifer. Aquacult. Nutr., 19(5): 773 784.

Faria, A.C.E.A., C. Hayashi, E.M. Galdioli& C.M. Soares. 2001. Farinha de peixe em rações para alevinos de tilápia do Nilo Oreochromis niloticus L. linhagem tailandesa. Acta Scientar., 23(4): 903-908.

Fries, E.M., J.D. Luchesi, J.M. Costa, C. Ressel, A.A. Signor, W.R. Boscolo & A. Feiden. 2011. Hidrolisados cárneos proteicos em rações para alevinos de Kinguio Carassius auratus. Bol. Instit. Pes., 37(4): 401-407.

Furuya, W. M. 2010. Tabelas Brasileiras para a Nutrição de Tilápias. 1ª ed. Toledo: GFM. 100p.

Glencroos, B.D., M. Booth & G.L. Allan. 2007. A feed is only as good as its ingredients – a review of ingredient evaluation strategies for aquaculture feeds. Aquacult. Nutr., 13(1): 17-34.

Gonçalves, A. C. Murgas, L. D. S. , Rosa, P. V. e , Navarro, R. D., Costa, D. V. da, Teixeira, E. de A.. Desempenho produtivo de tambacus alimentados com dietas suplementadas com vitamina E. Pesquisa agropecuária brasileira. Vol 45, 2010. https://doi.org/10.1590/S0100-204X2010000900010

Hara, T. J. (2011). Smell, taste, and chemical sensing chemoreception (smell and taste): An introduction. In A. P. Farrell (Ed.), Encyclopedia of fish physiology (pp. 183–186). San Diego, CA: Academic Press. https ://doi.org/10.1016/B978-0-12-374553-8.00021-6.

Instituto Adolfo Lutz (2004). Normas Analíticas do Instituto Adolfo Lutz. Métodos físico-químicos para análises de alimentos (4ª ed., 1020 p). São Paulo, SP: IMESP.

Kasumyan, A. O. (1997). Recepção gustativa e comportamento alimentar em peixes. Journal of Icthyology, 37, 78-93.

Kasumyan, A. O., & Doving, K.B. (2003). Preferências de gosto em peixes. Peixes e Pesca, 4, 289-347. https://doi.org/10.1046/j.1467-2979.2003.00121.x

Kasumyan, A. O., & Morsi, A.M. (1996). Sensibilidade ao sabor de carpa comum Cyprinus carpio para aminoácidos livres e substâncias clássicas de sabor. Journal of Icthyology, 36, 391-403.

Kasumyan, A. O., & Sidorov, S. S. (2012). Efeitos da anosmia de longo prazo combinados com a privação de visão sobre a sensibilidade do sabor e o comportamento alimentar da truta arco-íris (Oncorhynchus mykiss). Journal of Icthyology, 52, 109-119.

Kotzamanis, Y.P., E. Gisbert, F.J. Gatesoupe, J.Z. Infante & C. Cahu. 2007. Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass Dicentrarchus labrax larvae. Comp. Biochem. Physiol. Part A, 147(1): 205-214.

Lokkeborg, S., Siikavuopio, S. I., Humborstad, O. B., Palm, A. C. U., & Ferter, K. (2014). Towards more efficient longline fisheries: Fish feeding behavior, bait characteristics and development of alternative baits. Reviews in Fish Biology and Fisheries, 24, 985–1003

Mearns, K. J. (1986). Sensitivity of brown trout (Salmo trutta L.) and Atlantic salmon (Salmo salar L.) fry to amino acids at the start of exogenous feeding. Aquaculture, 55(3), 191–200. doi:10.1016/0044-8486(86)90114-6

Melo, J.S.C.; Pereira, J.A. Crescimento do híbrido tambacu (fêmea de Colossoma macropomum x macho de Piaractus mesopotamicus) em criação intensiva. Boletim Técnico do CEPTA, v.7, p.59-75, 1994.

Merino, G., M. Barange & C. Mullon. 2010. Climate variability and change scenarios for a marine commodity: modelling small pelagic fish, fisheries and fishmeal in a globalized market. J. Mar. Syst., 81(1): 196-205.

Moraes, S. (2016). The Physiology of Taste in Fish: Potential Implications for Feeding Stimulation and Gut Chemical Sensing. Reviews in Fisheries Science & Aquaculture, 25(2), 133–149. doi:10.1080/23308249.2016.1249279

Oliveira, S. R. ; Boscolo, W. R. ; Alves, D. R. S. ; Assis, J. F. ; Signor, A. ; Bittencourt, F.(2022) . Attractivity and palatability of different hydrolysed proteins for the ornamental species Betta splendens (Regan, 1910). Aquaculture Research (Online).

Olsen, K. H., & Lundh, T. (2016). Feeding stimulants in an omnivorous species, crucian carp Carassius carassius (Linnaeus 1758). Aquaculture Reports, 4, 66–73. https://doi.org/10.1016/j.aqrep.2016.06.005

Pereira, M.C.; Azevedo, R.V.; Braga, L.G.T. Óleos vegetais em rações para o híbrido tambacu (macho Piaractus mesopotamicus x fêmea Colossoma macropomum). Revista Brasileira de Saúde e Produção Animal [online], v.12, n.2, p.551-562, 2011.

Pereira da Silva, E.M. & Pezzato, L. E. (2000). Respostas da tilápia do Nilo (Oreochromis niloticus) à atratividade e palatabilidade de ingredientes utilizados na alimentação de peixes. Revista Brasileira de Zootecnia, 29 1273-1280. https: // doi.org/10.1590/S1516-35982000000500003

Silva, T.C., J.D.M. Rocha, P. Moreira, A. Signor & W. R. Boscolo. 2017. Fish protein hydrolysate in diets for Nile tilapia post-larvae. Pesq. Agropec. Bras. 52(7): 485-492.

Siikavuopio, S.I., James, P., Stenberg, E., Evensen, T., & Saether, B.S. (2017). Avaliação do hidrolisado proteico de subproduto da indústria pesqueira para inclusão na isca na pesca com palangre e em panela do bacalhau atlântico. Pesca sResearch, 188, 121–124. doi.org/10.1016/j.fishr es.2016.11.02

Srichanun, M., C. Tantikiti, T.M. Kortner, A. Krogdahn& R. Chotikachinda. 2014. Effects of different protein hydrolysate products and levels on growth, survival rate and digestive capacity in Asian seabass Lates calcarifer Bloch larvae. Aquaculture, 428-429: 195-202.

Zhou, Q.C. & R. Yue. 2012. Apaparent digestibility coefficients of selected feed ingredients for juvenile hybrid tilapia, Oreochromis niloticus x Oreochromis aureus. Aquaculture Res., 43(6): 806-814.

Published

28/11/2022

How to Cite

SANTOS , R. A. dos .; PIOVESAN, M. R.; OLIVEIRA, S. R. de .; HATTORI, J. F. de A. .; SOUZA , O. J. de . .; BOSCOLO , W. R. .; SIGNOR, A. .; BITTENCOURT, F. . Attractiveness and palatability of hydrolyzed feather protein for juvenile tambacu (Colossoma macropomum × Piaractus mesopotamicus). Research, Society and Development, [S. l.], v. 11, n. 16, p. e19111637352, 2022. DOI: 10.33448/rsd-v11i16.37352. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/37352. Acesso em: 12 nov. 2024.

Issue

Section

Agrarian and Biological Sciences