Immunosensor based on zinc oxide nanoparticles and anti-Afla B1 for the detection of oatmeal contaminated by mycotoxins

Authors

DOI:

https://doi.org/10.33448/rsd-v12i5.37402

Keywords:

Antibody; Mycotoxicoses; Biodevice; AFM; Electrochemical.

Abstract

Aflatoxin B1 (AFLA B1) is a type of mycotoxin, considered the most carcinogenic of the group. Observed in several foods, its ingestion can lead to several pathologies or even death in the long term. Through consumption of food contaminated by humans and animals. The existing techniques for its detection are based on chromatography or ELISA. They are tools with good sensitivity, however they do not meet the needs of the food industry. Therefore, new methodologies are needed for the analysis of contaminated foods. The purpose of this work was to develop an electrochemical immunosensor to detect AFLA B1. The sensor platform was synthesized through self-assembled layers based on the adsorption of the antibody linked to zinc oxide nanoparticles coupled to cysteine on the surface of the gold electrode. Therefore, to assemble and optimize the biosystem, a study was carried out to characterize the layers, bioactivity (selectivity, sensitivity and stability) and topography of the platform. For this, electrochemical techniques, cyclic voltammetry and electrochemical impedance spectroscopy, with atomic force microscopy were used. Subsequently subjected to samples of oat flour contaminated with different concentrations of AFLA B1. The manufactured immunosensor showed a linear response between 1 μg.mL-1 to 100 μg.mL-1, and detection limit 0.95 pg.mL-1, being evaluated in both types of samples. The platform exhibited good reproducibility and high selectivity when subjected to another mycotoxin, Ochratoxin A.

References

Abnous, K., Danesh, N. M., Alibolandi, M., Ramezani, M., Sarreshtehdar Emrani, A., Zolfaghari, R., & Taghdisi, S. M. (2017). A new amplified π-shape electrochemical aptasensor for ultrasensitive detection of aflatoxin B1. Biosensors and Bioelectronics, 94, 374–379. https://doi.org/10.1016/j.bios.2017.03.028

Alshannaq, A., & Yu, J.-H. (2017). Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. International Journal of Environmental Research and Public Health, 14(6), 632. https://doi.org/10.3390/ijerph14060632

Azri, F., Selamat, J., & Sukor, R. (2017). Electrochemical Immunosensor for the Detection of Aflatoxin B1 in Palm Kernel Cake and Feed Samples. Sensors, 17(12), 2776. https://doi.org/10.3390/s17122776

Costa, M. P., Frías, I. A. M., Andrade, C. A. S., & Oliveira, M. D. L. (2017). Impedimetric immunoassay for aflatoxin B1 using a cysteine modified gold electrode with covalently immobilized carbon nanotubes. Microchimica Acta, 184(9), 3205–3213. https://doi.org/10.1007/s00604-017-2308-y

Dai, Z., Shao, G., Hong, J., Bao, J., & Shen, J. (2009). Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor. Biosensors and Bioelectronics, 24(5), 1286–1291. https://doi.org/10.1016/j.bios.2008.07.047

Demirbakan, B., & Sezgintürk, M. K. (2017). A sensitive and disposable indium tin oxide based electrochemical immunosensor for label-free detection of MAGE-1. Talanta, 169, 163–169. https://doi.org/10.1016/j.talanta.2017.03.076

dos Santos Avelino, K. Y. P., Frías, I. A. M., Lucena-Silva, N., de Andrade, C. A. S., & de Oliveira, M. D. L. (2018). Impedimetric gene assay for BCR/ABL transcripts in plasmids of patients with chronic myeloid leukemia. Microchimica Acta, 185(9). https://doi.org/10.1007/s00604-018-2958-4

Dridi, F., Marrakchi, M., Gargouri, M., Saulnier, J., Jaffrezic-Renault, N., & Lagarde, F. (2017). Nanomaterial-based electrochemical biosensors for food safety and quality assessment. In Nanobiosensors (pp. 167–204). Elsevier. https://doi.org/10.1016/b978-0-12-804301-1.00005-9

Evtugyn, G., Subjakova, V., Melikishvili, S., & Hianik, T. (2018). Affinity Biosensors for Detection of Mycotoxins in Food. In Advances in Food and Nutrition Research (Vol. 85, pp. 263–310). Academic Press Inc. https://doi.org/10.1016/bs.afnr.2018.03.003

Grasset, F., Saito, N., Li, D., Park, D., Sakaguchi, I., Ohashi, N., Haneda, H., Roisnel, T., Mornet, S., & Duguet, E. (2003). Surface modification of zinc oxide nanoparticles by aminopropyltriethoxysilane. Journal of Alloys and Compounds, 360(1–2), 298–311. https://doi.org/10.1016/S0925-8388(03)00371-2

Jayaprakasan, A., Thangavel, A., Ramachandra Bhat, L., Gumpu, M. B., Nesakumar, N., Jayanth Babu, K., Vedantham, S., & Rayappan, J. B. B. (2018). Fabrication of an electrochemical biosensor with ZnO nanoflakes interface for methylglyoxal quantification in food samples. Food Science and Biotechnology, 27(1), 9–17. https://doi.org/10.1007/s10068-017-0193-0

Jia, Y., Wu, F., Liu, P., Zhou, G., Yu, B., Lou, X., & Xia, F. (2019). A label-free fluorescent aptasensor for the detection of Aflatoxin B1 in food samples using AIEgens and graphene oxide. Talanta, 198, 71–77. https://doi.org/10.1016/j.talanta.2019.01.078

Jia, Y., Zhou, G., Wang, X., Zhang, Y., Li, Z., Liu, P., Yu, B., & Zhang, J. (2020). A metal-organic framework/aptamer system as a fluorescent biosensor for determination of aflatoxin B1 in food samples. Talanta, 219, 121342. https://doi.org/10.1016/j.talanta.2020.121342

Kharayat, B. S., & Singh, Y. (2018). Mycotoxins in Foods: Mycotoxicoses, Detection, and Management. In Microbial Contamination and Food Degradation (pp. 395–421). Elsevier. https://doi.org/10.1016/B978-0-12-811515-2.00013-5

Kumar, Panwar, Kumar, Augustine, & Malhotra. (2019). Biofunctionalized Nanostructured Yttria Modified Non-Invasive Impedometric Biosensor for Efficient Detection of Oral Cancer. Nanomaterials, 9(9), 1190. https://doi.org/10.3390/nano9091190

Liu, D., Li, W., Zhu, C., Li, Y., Shen, X., Li, L., Yan, X., & You, T. (2020). Recent progress on electrochemical biosensing of aflatoxins: A review. In TrAC - Trends in Analytical Chemistry (Vol. 133). Elsevier B.V. https://doi.org/10.1016/j.trac.2020.115966

Ma, H., Sun, J., Zhang, Y., & Xia, S. (2016). Disposable amperometric immunosensor for simple and sensitive determination of aflatoxin B 1 in wheat. Biochemical Engineering Journal, 115, 38–46. https://doi.org/10.1016/j.bej.2016.08.003

Nečas, D., & Klapetek, P. (2012). Gwyddion: An open-source software for SPM data analysis. In Central European Journal of Physics (Vol. 10, Issue 1, pp. 181–188). https://doi.org/10.2478/s11534-011-0096-2

Oliveira, M. D. L., Correia, M. T. S., Coelho, L. C. B. B., & Diniz, F. B. (2008). Electrochemical evaluation of lectin–sugar interaction on gold electrode modified with colloidal gold and polyvinyl butyral. Colloids and Surfaces B: Biointerfaces, 66(1), 13–19. https://doi.org/10.1016/J.COLSURFB.2008.05.002

Ribeiro, D. V., Souza, C. A. C., & Abrantes, J. C. C. (2015). Use of Electrochemical Impedance Spectroscopy (EIS) to monitoring the corrosion of reinforced concrete. Revista IBRACON de Estruturas e Materiais, 8(4), 529–546. https://doi.org/10.1590/s1983-41952015000400007

Robbins, C. A., Swenson, L. J., Nealley, M. L., Kelman, B. J., & Gots, R. E. (2000). Health Effects of Mycotoxins in Indoor Air: A Critical Review. Applied Occupational and Environmental Hygiene, 15(10), 773–784. https://doi.org/10.1080/10473220050129419

Simão, E. P., Silva, D. B. S., Cordeiro, M. T., Gil, L. H. V., Andrade, C. A. S., & Oliveira, M. D. L. (2020). Nanostructured impedimetric lectin-based biosensor for arboviruses detection. Talanta, 208. https://doi.org/10.1016/j.talanta.2019.120338

Singh, A. K., Dhiman, T. K., V.S., L. G. B., & Solanki, P. R. (2021). Dimanganese trioxide (Mn2O3) based label-free electrochemical biosensor for detection of Aflatoxin-B1. Bioelectrochemistry, 137, 107684. https://doi.org/10.1016/j.bioelechem.2020.107684

Teixeira, S., Conlan, R. S., Guy, O. J., & Sales, M. G. F. (2014). Novel single-wall carbon nanotube screen-printed electrode as an immunosensor for human chorionic gonadotropin. Electrochimica Acta, 136, 323–329. https://doi.org/10.1016/j.electacta.2014.05.105

Wang, Y., Xu, H., Zhang, J., & Li, G. (2008). Electrochemical Sensors for Clinic Analysis. Sensors, 8, 2043–2081. www.mdpi.org/sensors

Xue, Z., Zhang, Y., Yu, W., Zhang, J., Wang, J., Wan, F., Kim, Y., Liu, Y., & Kou, X. (2019). Recent advances in aflatoxin B1 detection based on nanotechnology and nanomaterials-A review. In Analytica Chimica Acta (Vol. 1069, pp. 1–27). Elsevier B.V. https://doi.org/10.1016/j.aca.2019.04.032

Yagati, A. K., Chavan, S. G., Baek, C., Lee, M.-H., & Min, J. (2018). Label-Free Impedance Sensing of Aflatoxin B1 with Polyaniline Nanofibers/Au Nanoparticle Electrode Array. Sensors, 18(5), 1320. https://doi.org/10.3390/s18051320

Published

03/05/2023

How to Cite

CERQUEIRA, B. M. de .; ANDRADE, C. A. S. de .; OLIVEIRA, M. D. L. de . Immunosensor based on zinc oxide nanoparticles and anti-Afla B1 for the detection of oatmeal contaminated by mycotoxins. Research, Society and Development, [S. l.], v. 12, n. 5, p. e7312537402, 2023. DOI: 10.33448/rsd-v12i5.37402. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/37402. Acesso em: 19 nov. 2024.

Issue

Section

Health Sciences