Immunosensor based on zinc oxide nanoparticles and anti-Afla B1 for the detection of oatmeal contaminated by mycotoxins
DOI:
https://doi.org/10.33448/rsd-v12i5.37402Keywords:
Antibody; Mycotoxicoses; Biodevice; AFM; Electrochemical.Abstract
Aflatoxin B1 (AFLA B1) is a type of mycotoxin, considered the most carcinogenic of the group. Observed in several foods, its ingestion can lead to several pathologies or even death in the long term. Through consumption of food contaminated by humans and animals. The existing techniques for its detection are based on chromatography or ELISA. They are tools with good sensitivity, however they do not meet the needs of the food industry. Therefore, new methodologies are needed for the analysis of contaminated foods. The purpose of this work was to develop an electrochemical immunosensor to detect AFLA B1. The sensor platform was synthesized through self-assembled layers based on the adsorption of the antibody linked to zinc oxide nanoparticles coupled to cysteine on the surface of the gold electrode. Therefore, to assemble and optimize the biosystem, a study was carried out to characterize the layers, bioactivity (selectivity, sensitivity and stability) and topography of the platform. For this, electrochemical techniques, cyclic voltammetry and electrochemical impedance spectroscopy, with atomic force microscopy were used. Subsequently subjected to samples of oat flour contaminated with different concentrations of AFLA B1. The manufactured immunosensor showed a linear response between 1 μg.mL-1 to 100 μg.mL-1, and detection limit 0.95 pg.mL-1, being evaluated in both types of samples. The platform exhibited good reproducibility and high selectivity when subjected to another mycotoxin, Ochratoxin A.
References
Abnous, K., Danesh, N. M., Alibolandi, M., Ramezani, M., Sarreshtehdar Emrani, A., Zolfaghari, R., & Taghdisi, S. M. (2017). A new amplified π-shape electrochemical aptasensor for ultrasensitive detection of aflatoxin B1. Biosensors and Bioelectronics, 94, 374–379. https://doi.org/10.1016/j.bios.2017.03.028
Alshannaq, A., & Yu, J.-H. (2017). Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. International Journal of Environmental Research and Public Health, 14(6), 632. https://doi.org/10.3390/ijerph14060632
Azri, F., Selamat, J., & Sukor, R. (2017). Electrochemical Immunosensor for the Detection of Aflatoxin B1 in Palm Kernel Cake and Feed Samples. Sensors, 17(12), 2776. https://doi.org/10.3390/s17122776
Costa, M. P., Frías, I. A. M., Andrade, C. A. S., & Oliveira, M. D. L. (2017). Impedimetric immunoassay for aflatoxin B1 using a cysteine modified gold electrode with covalently immobilized carbon nanotubes. Microchimica Acta, 184(9), 3205–3213. https://doi.org/10.1007/s00604-017-2308-y
Dai, Z., Shao, G., Hong, J., Bao, J., & Shen, J. (2009). Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor. Biosensors and Bioelectronics, 24(5), 1286–1291. https://doi.org/10.1016/j.bios.2008.07.047
Demirbakan, B., & Sezgintürk, M. K. (2017). A sensitive and disposable indium tin oxide based electrochemical immunosensor for label-free detection of MAGE-1. Talanta, 169, 163–169. https://doi.org/10.1016/j.talanta.2017.03.076
dos Santos Avelino, K. Y. P., Frías, I. A. M., Lucena-Silva, N., de Andrade, C. A. S., & de Oliveira, M. D. L. (2018). Impedimetric gene assay for BCR/ABL transcripts in plasmids of patients with chronic myeloid leukemia. Microchimica Acta, 185(9). https://doi.org/10.1007/s00604-018-2958-4
Dridi, F., Marrakchi, M., Gargouri, M., Saulnier, J., Jaffrezic-Renault, N., & Lagarde, F. (2017). Nanomaterial-based electrochemical biosensors for food safety and quality assessment. In Nanobiosensors (pp. 167–204). Elsevier. https://doi.org/10.1016/b978-0-12-804301-1.00005-9
Evtugyn, G., Subjakova, V., Melikishvili, S., & Hianik, T. (2018). Affinity Biosensors for Detection of Mycotoxins in Food. In Advances in Food and Nutrition Research (Vol. 85, pp. 263–310). Academic Press Inc. https://doi.org/10.1016/bs.afnr.2018.03.003
Grasset, F., Saito, N., Li, D., Park, D., Sakaguchi, I., Ohashi, N., Haneda, H., Roisnel, T., Mornet, S., & Duguet, E. (2003). Surface modification of zinc oxide nanoparticles by aminopropyltriethoxysilane. Journal of Alloys and Compounds, 360(1–2), 298–311. https://doi.org/10.1016/S0925-8388(03)00371-2
Jayaprakasan, A., Thangavel, A., Ramachandra Bhat, L., Gumpu, M. B., Nesakumar, N., Jayanth Babu, K., Vedantham, S., & Rayappan, J. B. B. (2018). Fabrication of an electrochemical biosensor with ZnO nanoflakes interface for methylglyoxal quantification in food samples. Food Science and Biotechnology, 27(1), 9–17. https://doi.org/10.1007/s10068-017-0193-0
Jia, Y., Wu, F., Liu, P., Zhou, G., Yu, B., Lou, X., & Xia, F. (2019). A label-free fluorescent aptasensor for the detection of Aflatoxin B1 in food samples using AIEgens and graphene oxide. Talanta, 198, 71–77. https://doi.org/10.1016/j.talanta.2019.01.078
Jia, Y., Zhou, G., Wang, X., Zhang, Y., Li, Z., Liu, P., Yu, B., & Zhang, J. (2020). A metal-organic framework/aptamer system as a fluorescent biosensor for determination of aflatoxin B1 in food samples. Talanta, 219, 121342. https://doi.org/10.1016/j.talanta.2020.121342
Kharayat, B. S., & Singh, Y. (2018). Mycotoxins in Foods: Mycotoxicoses, Detection, and Management. In Microbial Contamination and Food Degradation (pp. 395–421). Elsevier. https://doi.org/10.1016/B978-0-12-811515-2.00013-5
Kumar, Panwar, Kumar, Augustine, & Malhotra. (2019). Biofunctionalized Nanostructured Yttria Modified Non-Invasive Impedometric Biosensor for Efficient Detection of Oral Cancer. Nanomaterials, 9(9), 1190. https://doi.org/10.3390/nano9091190
Liu, D., Li, W., Zhu, C., Li, Y., Shen, X., Li, L., Yan, X., & You, T. (2020). Recent progress on electrochemical biosensing of aflatoxins: A review. In TrAC - Trends in Analytical Chemistry (Vol. 133). Elsevier B.V. https://doi.org/10.1016/j.trac.2020.115966
Ma, H., Sun, J., Zhang, Y., & Xia, S. (2016). Disposable amperometric immunosensor for simple and sensitive determination of aflatoxin B 1 in wheat. Biochemical Engineering Journal, 115, 38–46. https://doi.org/10.1016/j.bej.2016.08.003
Nečas, D., & Klapetek, P. (2012). Gwyddion: An open-source software for SPM data analysis. In Central European Journal of Physics (Vol. 10, Issue 1, pp. 181–188). https://doi.org/10.2478/s11534-011-0096-2
Oliveira, M. D. L., Correia, M. T. S., Coelho, L. C. B. B., & Diniz, F. B. (2008). Electrochemical evaluation of lectin–sugar interaction on gold electrode modified with colloidal gold and polyvinyl butyral. Colloids and Surfaces B: Biointerfaces, 66(1), 13–19. https://doi.org/10.1016/J.COLSURFB.2008.05.002
Ribeiro, D. V., Souza, C. A. C., & Abrantes, J. C. C. (2015). Use of Electrochemical Impedance Spectroscopy (EIS) to monitoring the corrosion of reinforced concrete. Revista IBRACON de Estruturas e Materiais, 8(4), 529–546. https://doi.org/10.1590/s1983-41952015000400007
Robbins, C. A., Swenson, L. J., Nealley, M. L., Kelman, B. J., & Gots, R. E. (2000). Health Effects of Mycotoxins in Indoor Air: A Critical Review. Applied Occupational and Environmental Hygiene, 15(10), 773–784. https://doi.org/10.1080/10473220050129419
Simão, E. P., Silva, D. B. S., Cordeiro, M. T., Gil, L. H. V., Andrade, C. A. S., & Oliveira, M. D. L. (2020). Nanostructured impedimetric lectin-based biosensor for arboviruses detection. Talanta, 208. https://doi.org/10.1016/j.talanta.2019.120338
Singh, A. K., Dhiman, T. K., V.S., L. G. B., & Solanki, P. R. (2021). Dimanganese trioxide (Mn2O3) based label-free electrochemical biosensor for detection of Aflatoxin-B1. Bioelectrochemistry, 137, 107684. https://doi.org/10.1016/j.bioelechem.2020.107684
Teixeira, S., Conlan, R. S., Guy, O. J., & Sales, M. G. F. (2014). Novel single-wall carbon nanotube screen-printed electrode as an immunosensor for human chorionic gonadotropin. Electrochimica Acta, 136, 323–329. https://doi.org/10.1016/j.electacta.2014.05.105
Wang, Y., Xu, H., Zhang, J., & Li, G. (2008). Electrochemical Sensors for Clinic Analysis. Sensors, 8, 2043–2081. www.mdpi.org/sensors
Xue, Z., Zhang, Y., Yu, W., Zhang, J., Wang, J., Wan, F., Kim, Y., Liu, Y., & Kou, X. (2019). Recent advances in aflatoxin B1 detection based on nanotechnology and nanomaterials-A review. In Analytica Chimica Acta (Vol. 1069, pp. 1–27). Elsevier B.V. https://doi.org/10.1016/j.aca.2019.04.032
Yagati, A. K., Chavan, S. G., Baek, C., Lee, M.-H., & Min, J. (2018). Label-Free Impedance Sensing of Aflatoxin B1 with Polyaniline Nanofibers/Au Nanoparticle Electrode Array. Sensors, 18(5), 1320. https://doi.org/10.3390/s18051320
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Brenda Marques de Cerqueira; César Augusto Souza de Andrade; Maria Danielly Lima de Oliveira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.