Encapsulation methods of entomopathogenic fungi for their application in the biological control

Authors

DOI:

https://doi.org/10.33448/rsd-v11i16.38031

Keywords:

Microorganisms; Coating; Protection; Eco-friendly.

Abstract

Currently, crop protection has been carried out using pesticides, however, the inappropriate use and long periods of exposure to these products have caused a series of problems for the environment and human health. Biological control, more specifically using entomopathogenic fungi, appears as an effective and eco-friendly alternative to pesticides, however, these microorganisms are highly sensitive to some environmental conditions, such as temperature variation and ultraviolet light. Thus, some encapsulation methods have been developed to protect fungi against these factors. To a better understanding of these methods, in this work, we carried out a literature review addressing some encapsulation techniques for entomopathogenic fungi for their application in biological control. The materials used in encapsulation are synthetic polymers (polyurethane, polyacrylate, and polyvinyl alcohol) or natural polymers (alginate, starch, cellulose, and gelatin, among others). The material selected must form a stable, inert, and resistant protection capable of releasing the contents in time and under ideal conditions. Among the techniques for encapsulating entomopathogenic fungi, we can highlight thermal gelation, ionic gelation, spray-drying, coacervation, and LentiKats®. Encapsulations of Trichoderma harzianum by ionic gelation and of Beauveria bassiana by ionic gelation and spray-drying have already been successfully reported. Overall, encapsulation techniques protect fungi against environmental factors and increase the efficiency and viability of these microorganisms in the field.

References

Acheampong, M. A., Hilla, M. P., Moorea, S. D., & Coombesa, A. C. (2020). UV sensitivity of Beauveria bassiana and Metarhizium anisopliae isolates under investigation as potential biological control agents in South African citrus orchards. Fungal Biology, 124(5): 304–310. https://doi.org/10.1016/j.funbio.2019.08.009.

Aguilar, K. C., Tello, F., Bierhalz, C. K., Garnica Romo, M. G., Martínez Flores, H. E., & Grosso, C. R. F. (2015). Protein adsorption onto alginate-pectin microparticles and films produced by ionic gelation. Journal of Food Engineering, 154: 17–24. https://doi.org/10.1016/j.jfoodeng.2014.12.020.

Asghar, U., Malik, M. F., & Javed, A. (2016). Pesticide exposure and human health: a review. Journal of Ecosystem & Ecography, 1–4. 10.4172/2157-7625.S5-005.

Benavides, S., Cortés, P., Parada, J., & Franco, W. (2016). Development of alginate microspheres containing thyme essential oil using ionic gelation. Food Chemistry, 204: 77–83. https://doi.org/10.1016/j.foodchem.2016.02.104.

Bettiol, W., & Morandi, M.A.B. (2009). Biocontrole de doenças de plantas: uso e perspectivas. Embrapa Meio Ambiente, Jaguariúna, 341p.

Brasil. Decreto nº 4.074, de 04 de janeiro de 2002. Regulamenta a Lei nº 7.802, de 11 de julho de 1989, que dispõe sobre a pesquisa, a experimentação, a produção, a embalagem e rotulagem, o transporte, o armazenamento, a comercialização, a propaganda comercial, a utilização, a importação, a exportação, o destino final dos resíduos e embalagens, o registro, a classificação, o controle, a inspeção e a fiscalização de agrotóxicos, seus componentes e afins, e dá outras providências. Diário Oficial da União, Brasília, DF, 04 jan. 2002 Disponível em: http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumosagricolas/agrotoxicos/legislacao/arquivos-de-legislacao/decreto-4074-2002-decretodos-agrotoxicos/view. Acesso em: 30 nov 2021.

Choudhury, N., Meghwal, M., & Das, K. (2021). Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Frontiers, 2(4): 426–442. https://doi.org/10.1002/fft2.94.

Crowder, D. W., & Harwood, J. D. (2014). Promoting biological control in a rapidly changing world. Biological Control, 75: 1–7. https://doi.org/10.1016/j.biocontrol.2014.04.009.

Da Silva, T. M., Rodrigues, L. Z., Nunes, G. L., Codevilla, C. F., Da Silva, C. B., & De Menezes, C. R. (2015). Encapsulação de compostos bioativos por coacervação complexa. Ciência e Natura, 37: 56–64.

Faostat. Pesticides use. Disponível em: https://www.fao.org/faostat/en/#data/RP. Acesso em: 09. nov. 2022.

Felizatti, A. P., Manzano, R. M., Rodrigues, I. M. W., Da Silva, M. F. G., Fernandes, J. B., & Forim, M. R. (2021). Encapsulation of B. bassiana in Biopolymers: Improving Microbiology of Insect Pest Control. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2021.704812.

John, R. P., Tyagi, R. D., Brar, S. K., Surampalli, R. Y., & Prévost, D. (2011). Bio-encapsulation of microbial cells for targeted agricultural delivery. Critical Reviews in Biotechnology, 31(3): 211–226. https://doi.org/10.3109/07388551.2010.513327.

Jyothi, N. V. N., Prasanna, P. M., Sakarkar, S. N., Prabha, K, S., Ramaiah, P. S., & Srawan, G. Y. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation, 27(3): 187–197. https://doi.org/10.3109/02652040903131301.

Krasňan, V., Stloukal, R., Rosenberg, M., & Rebros, M. (2016). Immobilization of cells and enzymes to LentiKats®. Applied Microbiology and Biotechnology, 100(6): 2535–2553. https://doi.org/10.1007/s00253-016-7283-4.

Mancera-López, M. E., Izquierdo-Estévez, W. F., Escalante-Sánchez, A., Ibarra, J. E., & Barrera-Cortés, J. (2019). Encapsulation of Trichoderma harzianum conidia as a method of conidia preservation at room temperature and propagation in submerged culture. Biocontrol Science and Technology, 29(2): 107–130. https://doi.org/10.1080/09583157.2018.1535053.

Maruyama, C. R., Bilesky-José, N., Lima, R., & Fraceto, L. F. (2020). Encapsulation of Trichoderma harzianum Preserves Enzymatic Activity and Enhances the Potential for Biological Control. Frontiers in Bioengineering and Biotechnology, 8: 1–14. https://doi.org/10.3389/fbioe.2020.00225.

Mossa, A. T. H. (2016). Green Pesticides: Essential oils as biopesticides in insect-pest management. Journal of Environmental Science and Technology, 9(5): 354–378. https://dx.doi.org/10.3923/jest.2016.354.378.

Nava, D. E. (2007). Controle biológico de insetos-praga em frutíferas de clima temperado: uma opção viável, mas desafiadora. (First edition). Embrapa Clima Temperado, Pelótas, 20p.

Radosavljević, M., Levic, S., Belovic, M., Pejin, J., Djukic-Vukovic, A., Mojovic, L., & Nedovic, V. (2021). Encapsulation of Lactobacillus rhamnosus in Polyvinyl Alcohol for the production of L-(+)-Lactic Acid. Process Biochemistry, 100: 149–160. https://doi.org/10.1016/j.procbio.2020.10.006.

Rocha, L. C. R. Desenvolvimento de micropartículas contendo suco de tomate via gelificação iônica. 2017. 87 f. Dissertação (Mestrado) – Programa de Pós Graduação em Engenharia de Biomateriais – Produtos e nanoprodutos alimentícios, Universidade Federal de Lavras, Lavras, 2017.

Saberi-Riseh, R., Moradi-Pour, M., Mohammadinejad, R., & Thakur, V. K. (2021). Biopolymers for biological control of plant pathogens: Advances in microencapsulation of beneficial microorganisms. Polymers, 13(12): 1–23. https://doi.org/10.3390/polym13121938.

Schoubben, a., Blasi, P., Giovagnoli, S., Rossi, C., & Ricci, M. (2010). Development of a scalable procedure for fine calcium alginate particle preparation. Chemical Engineering Journal, 160(1): 363– 369. https://doi.org/10.1016/j.cej.2010.02.062.

Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., … & Thukral, A. K. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1(11): 1–16. https://doi.org/10.1007/s42452-019-1485-1.

Silva, P. T., Fries, L. L. M., Menezes, C. R., Holkem, A. T., Schwan, C. L., Wigmann, E. F., Bastos, J. O., & Da Silva, C. B. (2014). Microencapsulation: concepts, mechanisms, methods and some applications in food technology. Ciência Rural, 44(7): 1304–1311. https://doi.org/10.1590/0103-8478cr20130971.

Vemmer, M., & Patel, A. V. (2013). Review of encapsulation methods suitable for microbial biological control agents. Biological Control, 67(3): 380–389. https://doi.org/10.1016/j.biocontrol.2013.09.003.

Zhu, J., Wang J., Ding, Y., Liu, B., & Xiao, W. (2018). A systems-level approach for investigating organophosphorus pesticide toxicity. Ecotoxicology and Environmental Safety, 149: 26–35. https://doi.org/10.1016/j.ecoenv.2017.10.066.

Published

01/12/2022

How to Cite

CELESTINO, M. F. .; OLIVEIRA, J. A. dos S. . Encapsulation methods of entomopathogenic fungi for their application in the biological control. Research, Society and Development, [S. l.], v. 11, n. 16, p. e123111638031, 2022. DOI: 10.33448/rsd-v11i16.38031. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/38031. Acesso em: 29 nov. 2024.

Issue

Section

Review Article