Effects of a potentiated zinc oxide on growth performance, incidence of diarrhea, mineral excretion, and bone breaking strength of nursery pigs

Authors

DOI:

https://doi.org/10.33448/rsd-v11i16.38715

Keywords:

Bone health; Fecal excretion; Newly weaned pigs; Zinc oxide.

Abstract

The objective of the present study was to evaluate the effects of a potentiated (PZnO) and conventional source of zinc oxide (ZnO) on growth performance, bone breaking strength, incidence of diarrhea, and fecal excretion of phosphorus (P), zinc (Zn), and copper (Cu) of nursery pigs. A total of 84 pigs weaned at 21 d of age (6.1 ± 0.9 kg) were allotted based on a completely randomized block design. The nutritional program was divided in four dietary phases with four dietary treatments: [NC negative control: no ZnO and regular P levels (0.440; 0.420; 0.400; 0.380%); PC positive control: inclusion of ZnO (3,000, 3,000, 2,200, 1,000 ppm) and regular P levels (0.440; 0.420; 0.400; 0.380%); ZnO + PZnO: association between ZnO (1,000, 1,000, 500, 0 ppm) and PZnO (500, 500, 500, 500 ppm) and 10% low P levels (0.396; 0.379; 0.360; 0.340%); PZnO: inclusion of the PZnO (500, 500, 250, 250 ppm) and 10% low P levels (0.396; 0.379; 0.360; 0.340%)]. Data were analyzed using the GLM procedure of SAS 9.4. Pigs fed diets supplemented with PZnO increased overall ADFI (P < 0.05) when compared with treatment with ZnO. Pigs fed diets supplemented with PZnO reduced (P < 0.05) Zn excretion when compared to treatment with ZnO. The treatments with PZnO reduced (P < 0.05) P excretion during phase 3 when compared with treatment with ZnO. In conclusion, the use of PZnO supplemented at lower levels than the conventional source of ZnO, can be a potential alternative to reduce the environmental impact of the swine production systems by optimizing the P utilization, reducing Zn excretion, and still maintaining an optimal feed intake.

References

Augspurger, N. R., J. D. Spencer, D. M. Webel, & D. H. Baker. (2004). Pharmacological zinc levels reduce the phosphorus-releasing efficacy of phytase in young pigs and chickens. Journal of Animal Science. 82:1732–1739. 10.2527/2004.8261732x.

Bai, M., H. Liu, K. Xu, C. Wen, R. Yu, J. Deng, & Y. Yin. (2019). Use of coated nano zinc oxide as an additive to improve the zinc excretion and intestinal morphology of growing pigs. Journal of Animal Science. 97:1772–1783. 10.1093/jas/skz065.

Bednorz, C., K. Oelgeschläger, B. Kinnemann, S. Hartmann, K. Neumann, R. Pieper, A. Bethe, T. Semmler, K. Tedin, P. Schierack, L. H. Wieler, & S. Guenther. (2013). The broader context of antibiotic resistance: Zinc feed supplementation of piglets increases the proportion of multi-resistant Escherichia coli in vivo. International Journal of Medical Microbiolpgy. 303:396–403. 10.1016/j.ijmm.2013.06.004.

Brewer, G. J., V. Yuzbasiyan-Gurkan, & D. Y. Lee. (1990). Use of zinc-copper metabolic interactions in the treatment of Wilson’s disease. Journal of the American College of Nutrition. 9:487–491. 10.1080/07315724.1990.10720405.

Buff, C. E., D. W. Bollinger, M. R. Ellersieck, W. A. Brommelsiek, & T. L. Veum. (2005). Comparison of growth performance and zinc absorption, retention, and excretion in weanling pigs fed diets supplemented with zinc-polysaccharide or zinc oxide. Journal of Animal Science. 83:2380–2386. 10.2527/2005.83102380x.

Bühler, K., A. Liesegang, B. Bucher, C. Wenk, & J. Broz. (2010). Influence of benzoic acid and phytase in low-phosphorus diets on bone characteristics in growing-finishing pigs. Journal of Animal Science. 88:3363–3371. 10.2527/jas.2009-1940.

Campbell, J. M., J. D. Crenshaw, & J. Polo. (2013). The biological stress of early weaned piglets. Journal of Animal Science and Biotechnology. 4:19. 10.1186/2049-1891-4-19.

Casey, P. G., G. E. Gardiner, G. Casey, B. Bradshaw, P. G. Lawlor, P. B. Lynch, F. C. Leonard, C. Stanton, R. P. Ross, G. F. Fitzgerald, & C. Hill. (2007). A five-strain probiotic combination reduces pathogen shedding and alleviates disease signs in pigs challenged with Salmonella enterica Serovar Typhimurium. Applied Environment Microbiology. 73:1858–1863. 10.1128/AEM.01840-06.

Champagne, E. T., M. S. Fisher, & O. Hinojosa. (1990). NMR and ESR studies of interactions among divalent cations, phytic acid, and N-acetyl-amino acids. Journal of Inorganic Biochemistry. 38:199–215. 10.1016/0162-0134(90)84013-F.

Cho, J. H., S. D. Upadhaya, & I. H. Kim. (2015). Effects of dietary supplementation of modified zinc oxide on growth performance, nutrient digestibility, blood profiles, fecal microbial shedding and fecal score in weanling pigs. Animal Science Journal 86:617–623. 10.1111/asj.12329.

Cousins, R. J. (1994). Metal Elements and Gene Expression. Annual Revison of Nutrition. 14:449–469. 10.1146/annurev.nu.14.070194.002313.

Gräber, I., J. F. Hansen, S. E. Olesen, J. Petersen, H. S. Østergaard, & L. Krogh. (2005). Accumulation of copper and zinc in Danish agricultural soils in intensive pig production areas. Journal of Geography. 105:15–22. 10.1080/00167223.2005.10649536.

Grilli, E., B. Tugnoli, F. Vitari, C. Domeneghini, M. Morlacchini, A. Piva, & A. Prandini. (2015). Low doses of microencapsulated zinc oxide improve performance and modulate the ileum architecture, inflammatory cytokines and tight junctions expression of weaned pigs. Animal. 9:1760–1768. 10.1017/S1751731115001329.

Heo, J. M., F. O. Opapeju, J. R. Pluske, J. C. Kim, D. J. Hampson, & C. M. Nyachoti. (2013). Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhea without using in-feed antimicrobial compounds. Journal of Animal Physiology and Animal Nutrition. 97:207–237. 10.1111/j.1439-0396.2012.01284.x.

Hölzel, C. S., C. Müller, K. S. Harms, S. Mikolajewski, S. Schäfer, K. Schwaiger, & J. Bauer. (2012). Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance. Environment Research. 113:21–27. 10.1016/j.envres.2012.01.002.

Instituto Adolfo Lutz. (2008). Métodos físico-químicos para análise de alimentos. ANVISA, São Paulo, Brazil.

Jensen, J., N. C. Kyvsgaard, A. Battisti, & K. E. Baptiste. (2018). Environmental and public health related risk of veterinary zinc in pig production - Using Denmark as an example. Environment International. 10.1016/j.envint.2018.02.007.

Kim, J. C., C. F. Hansen, B. P. Mullan, & J. R. Pluske. (2012). Nutrition and pathology of weaner pigs: Nutritional strategies to support barrier function in the gastrointestinal tract. Animal Feed Science and Technology. 173:3–16. 10.1016/j.anifeedsci.2011.12.022.

de Lange, C. F. M., J. Pluske, J. Gong, & C. M. Nyachoti. (2010). Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livestock Science. 134:124–134. 10.1016/j.livsci.2010.06.117.

Lei, X. J., & I. H. Kim. (2018). Low dose of coated zinc oxide is as effective as pharmacological zinc oxide in promoting growth performance, reducing fecal scores, and improving nutrient digestibility and intestinal morphology in weaned pigs. Animal Feed Science and Technology. 245:117–125. 10.1016/j.anifeedsci.2018.06.011.

Liu, Y., C. D. Espinosa, J. J. Abelilla, G. A. Casas, L. V. Lagos, S. A. Lee, W. B. Kwon, J. K. Mathai, D. M. D. L. Navarro, N. W. Jaworski, & H. H. Stein. (2018). Non-antibiotic feed additives in diets for pigs: A review. Animal Nutrition. 10.1016/j.aninu.2018.01.007.

Long, L., J. Chen, Y. Zhang, X. Liang, H. Ni, B. Zhang, & Y. Yin. (2017). Comparison of porous and nano zinc oxide for replacing high-dose dietary regular zinc oxide in weaning piglets. Y. K. Mishra, editor. PLoS One. 12:e0182550. 10.1371/journal.pone.0182550.

Martin, M. J., S. E. Thottathil, & T. B. Newman. (2015). Antibiotics overuse in animal agriculture: A call to action for health care providers. American Journal of Public Health. 105:2409–2410. 10.2105/AJPH.2015.302870.

McDowell, L. R. (2003). Minerals in animal and human nutrition. Elsevier Inc. 10.1016/B978-0-444-51367-0.X5001-6.

Milani, N. C., M. Sbardella, N. Y. Ikeda, A. Arno, B. C. Mascarenhas, & V. S. Miyada. (2017). Dietary zinc oxide nanoparticles as growth promoter for weanling pigs. Animal Feed Science and Technology. 227:13–23. 10.1016/j.anifeedsci.2017.03.001.

Misiura, M. M., J. A. N. Filipe, C. L. Walk, & I. Kyriazakis. (2020). How do pigs deal with dietary phosphorus deficiency? British Journal of Nutrition. 124:256–272. 10.1017/S0007114520000975.

Moeser, A. J., C. S. Pohl, & M. Rajput. (2017). Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Animal Nutrition. 3:313–321. 10.1016/j.aninu.2017.06.003.

O’Doherty, J. V., C. S. Nolan, J. J. Callan, & P. McCarthy. (2004). The interaction between lactose feed level and soya-bean meal on growth performance of weanling pigs. Animal Science. 78:419–427. 10.1017/S1357729800058823.

O’Shea, C. J., P. McAlpine, T. Sweeney, P. F. Varley, & J. V. O’Doherty. (2014). Effect of the interaction of seaweed extracts containing laminarin and fucoidan with zinc oxide on the growth performance, digestibility and fecal characteristics of growing piglets. British Journal of Nutrition. 111:798–807. 10.1017/S0007114513003280.

Pierce, K. M., J. J. Callan, P. McCarthy, & J. V. O’Doherty. (2005). Performance of weanling pigs offered low or high lactose diets supplemented with avilamycin or inulin. Animal Science. 80:313–318. 10.1079/ASC40900313.

Raquipo, J. M. B., F. C. C. Reyes, B. A. Moog, E. P. Angeles, S. Regaspi, Anthony Francis, & A. M. Cuizon. (2017). Performance of nursery pigs fed diets with coated or potentiated zinc oxide. Philippine Journal of Veterinary and Animal Science. 43:133–138.

Rostagno, H. S., L. F. T. Albino, J. L. Donzele, P. C. Gomes, R. F. de Oliveira, D. C. Lopes, A. S. Ferreira, S. L. T. Barreto, & R. Euclides. (2017). Brazilian tables for poultry and swine: composition of feedstuffs and nutritional requirements. 4th Edition.; UFV: Viçosa, Brazil.

Shen, J., Y. Chen, Z. Wang, A. Zhou, M. He, L. Mao, H. Zou, Q. Peng, B. Xue, L. Wang, X. Zhang, S. Wu, & Y. Lv. (2014). Coated zinc oxide improves intestinal immunity function and regulates microbiota composition in weaned piglets. British Journal of Nutrition. 111:2123–2134. 10.1017/S0007114514000300.

Sirelkhatim, A., S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, & D. Mohamad. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Microbiology Letter. 7:219–242. 10.1007/s40820-015-0040-x.

Song, Z. H., K. Xiao, Y. L. Ke, L. F. Jiao, & C. H. Hu. (2015). Zinc oxide influences mitogen-activated protein kinase and TGF-β1 signaling pathways, and enhances intestinal barrier integrity in weaned pigs. Innate Immunology. 21:341–348. 10.1177/1753425914536450.

Upadhaya, S. D., Y. M. Kim, K. Y. Lee, & I. H. Kim. (2018). Use of protected zinc oxide in lower doses in weaned pigs in substitution for the conventional high dose zinc oxide. Animal Feed Science and Technology. 240:1–10. 10.1016/j.anifeedsci.2018.03.012.

Wang, C., Ligen Zhang, Z. Ying, J. He, L. Zhou, Lili Zhang, X. Zhong, & T. Wang. (2018). Effects of dietary zinc oxide nanoparticles on growth, diarrhea, mineral deposition, intestinal morphology, and barrier of weaned piglets. Biological Trace Elements Research. 185:364–374. 10.1007/s12011-018-1266-5.

Yazdankhah, S., K. Rudi, & A. Bernhoft. (2014). Zinc and copper in animal feed – development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microbial Ecology of Health and Disorders. 10.3402/mehd.v25.25862.

Zhang, L., Y. Jiang, Y. Ding, M. Povey, & D. York. (2007). Investigation into the antibacterial behavior of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal Nanoparticle Research. 9:479–489. 10.1007/s11051-006-9150-1.

Downloads

Published

16/12/2022

How to Cite

MOITA, V. H. C. .; SILVA , B. A. N. .; CARDOSO , D. de S.; CHAVES , R. F. .; CARDOSO , H. M. C. .; GONÇALVES , M. F. .; LIMA, V. R. .; GARCIA , W. A. .; DUARTE , M. E. .; ABREU, M. L. T. de . Effects of a potentiated zinc oxide on growth performance, incidence of diarrhea, mineral excretion, and bone breaking strength of nursery pigs . Research, Society and Development, [S. l.], v. 11, n. 16, p. e514111638715, 2022. DOI: 10.33448/rsd-v11i16.38715. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/38715. Acesso em: 20 apr. 2024.

Issue

Section

Agrarian and Biological Sciences