Efeito de uma fonte potencializada de oxido de zinco no crescimento, incidência de diarreia, excreção mineral, e resistência óssea de leitões em fase de creche

Autores

DOI:

https://doi.org/10.33448/rsd-v11i16.38715

Palavras-chave:

Bone health; Fecal excretion; Newly weaned pigs; Zinc oxide.

Resumo

O objetivo do presente estudo foi avaliar os efeitos de uma fonte potencializada (PZnO) e convencional de óxido de zinco (ZnO) no desempenho de crescimento, resistência à fratura óssea, incidência de diarreia e excreção fecal de fósforo (P), zinco (Zn) e cobre (Cu) de leitões. Um total de 84 leitões desmamados aos 21 dias de idade (6,1 ± 0,9 kg) foram distribuídos com base em um delineamento de blocos inteiramente casualizado. O programa nutricional foi dividido em quatro fases com quatro tratamentos: [controle negativo NC: sem inclusão de ZnO e níveis regulares de P (0,440; 0,420; 0,400; 0,380%); Controle positivo de PC: inclusão de ZnO (3,000, 3,000, 2,200, 1,000 ppm) e níveis regulares de P (0,440; 0,420; 0,400; 0,380%); ZnO + PZnO: associação entre ZnO (1,000, 1,000, 500, 0 ppm) e PZnO (500, 500, 500, 500 ppm) e 10% níveis baixos de P (0,396; 0,379; 0,360; 0,340%); PZnO: inclusão do PZnO (500, 500, 250, 250 ppm) e 10% de níveis baixos de P (0,396; 0,379; 0,360; 0,340%)]. conteúdo mineral. Os dados foram analisados usando o procedimento GLM do SAS 9.4. Leitões alimentados com dietas suplementadas com PZnO aumentaram o consumo durante o período experimental (P < 0,05) quando comparados com o tratamento com ZnO. Leitões alimentados com dietas suplementadas com PZnO reduziram (P < 0,05) a excreção de Zn quando comparados ao tratamento com ZnO. Os tratamentos com PZnO reduziram (P < 0,05) a excreção de P durante fase 3 quando comparados com o tratamento com ZnO. Em conclusão, o uso de PZnO suplementado em níveis inferiores à fonte convencional de ZnO, pode ser uma alternativa potencial para reduzir o impacto ambiental dos sistemas de produção de suínos, otimizando a utilização de P, reduzindo a excreção de Zn e ainda mantendo um consumo de ração ideal.

Referências

Augspurger, N. R., J. D. Spencer, D. M. Webel, & D. H. Baker. (2004). Pharmacological zinc levels reduce the phosphorus-releasing efficacy of phytase in young pigs and chickens. Journal of Animal Science. 82:1732–1739. 10.2527/2004.8261732x.

Bai, M., H. Liu, K. Xu, C. Wen, R. Yu, J. Deng, & Y. Yin. (2019). Use of coated nano zinc oxide as an additive to improve the zinc excretion and intestinal morphology of growing pigs. Journal of Animal Science. 97:1772–1783. 10.1093/jas/skz065.

Bednorz, C., K. Oelgeschläger, B. Kinnemann, S. Hartmann, K. Neumann, R. Pieper, A. Bethe, T. Semmler, K. Tedin, P. Schierack, L. H. Wieler, & S. Guenther. (2013). The broader context of antibiotic resistance: Zinc feed supplementation of piglets increases the proportion of multi-resistant Escherichia coli in vivo. International Journal of Medical Microbiolpgy. 303:396–403. 10.1016/j.ijmm.2013.06.004.

Brewer, G. J., V. Yuzbasiyan-Gurkan, & D. Y. Lee. (1990). Use of zinc-copper metabolic interactions in the treatment of Wilson’s disease. Journal of the American College of Nutrition. 9:487–491. 10.1080/07315724.1990.10720405.

Buff, C. E., D. W. Bollinger, M. R. Ellersieck, W. A. Brommelsiek, & T. L. Veum. (2005). Comparison of growth performance and zinc absorption, retention, and excretion in weanling pigs fed diets supplemented with zinc-polysaccharide or zinc oxide. Journal of Animal Science. 83:2380–2386. 10.2527/2005.83102380x.

Bühler, K., A. Liesegang, B. Bucher, C. Wenk, & J. Broz. (2010). Influence of benzoic acid and phytase in low-phosphorus diets on bone characteristics in growing-finishing pigs. Journal of Animal Science. 88:3363–3371. 10.2527/jas.2009-1940.

Campbell, J. M., J. D. Crenshaw, & J. Polo. (2013). The biological stress of early weaned piglets. Journal of Animal Science and Biotechnology. 4:19. 10.1186/2049-1891-4-19.

Casey, P. G., G. E. Gardiner, G. Casey, B. Bradshaw, P. G. Lawlor, P. B. Lynch, F. C. Leonard, C. Stanton, R. P. Ross, G. F. Fitzgerald, & C. Hill. (2007). A five-strain probiotic combination reduces pathogen shedding and alleviates disease signs in pigs challenged with Salmonella enterica Serovar Typhimurium. Applied Environment Microbiology. 73:1858–1863. 10.1128/AEM.01840-06.

Champagne, E. T., M. S. Fisher, & O. Hinojosa. (1990). NMR and ESR studies of interactions among divalent cations, phytic acid, and N-acetyl-amino acids. Journal of Inorganic Biochemistry. 38:199–215. 10.1016/0162-0134(90)84013-F.

Cho, J. H., S. D. Upadhaya, & I. H. Kim. (2015). Effects of dietary supplementation of modified zinc oxide on growth performance, nutrient digestibility, blood profiles, fecal microbial shedding and fecal score in weanling pigs. Animal Science Journal 86:617–623. 10.1111/asj.12329.

Cousins, R. J. (1994). Metal Elements and Gene Expression. Annual Revison of Nutrition. 14:449–469. 10.1146/annurev.nu.14.070194.002313.

Gräber, I., J. F. Hansen, S. E. Olesen, J. Petersen, H. S. Østergaard, & L. Krogh. (2005). Accumulation of copper and zinc in Danish agricultural soils in intensive pig production areas. Journal of Geography. 105:15–22. 10.1080/00167223.2005.10649536.

Grilli, E., B. Tugnoli, F. Vitari, C. Domeneghini, M. Morlacchini, A. Piva, & A. Prandini. (2015). Low doses of microencapsulated zinc oxide improve performance and modulate the ileum architecture, inflammatory cytokines and tight junctions expression of weaned pigs. Animal. 9:1760–1768. 10.1017/S1751731115001329.

Heo, J. M., F. O. Opapeju, J. R. Pluske, J. C. Kim, D. J. Hampson, & C. M. Nyachoti. (2013). Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhea without using in-feed antimicrobial compounds. Journal of Animal Physiology and Animal Nutrition. 97:207–237. 10.1111/j.1439-0396.2012.01284.x.

Hölzel, C. S., C. Müller, K. S. Harms, S. Mikolajewski, S. Schäfer, K. Schwaiger, & J. Bauer. (2012). Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance. Environment Research. 113:21–27. 10.1016/j.envres.2012.01.002.

Instituto Adolfo Lutz. (2008). Métodos físico-químicos para análise de alimentos. ANVISA, São Paulo, Brazil.

Jensen, J., N. C. Kyvsgaard, A. Battisti, & K. E. Baptiste. (2018). Environmental and public health related risk of veterinary zinc in pig production - Using Denmark as an example. Environment International. 10.1016/j.envint.2018.02.007.

Kim, J. C., C. F. Hansen, B. P. Mullan, & J. R. Pluske. (2012). Nutrition and pathology of weaner pigs: Nutritional strategies to support barrier function in the gastrointestinal tract. Animal Feed Science and Technology. 173:3–16. 10.1016/j.anifeedsci.2011.12.022.

de Lange, C. F. M., J. Pluske, J. Gong, & C. M. Nyachoti. (2010). Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livestock Science. 134:124–134. 10.1016/j.livsci.2010.06.117.

Lei, X. J., & I. H. Kim. (2018). Low dose of coated zinc oxide is as effective as pharmacological zinc oxide in promoting growth performance, reducing fecal scores, and improving nutrient digestibility and intestinal morphology in weaned pigs. Animal Feed Science and Technology. 245:117–125. 10.1016/j.anifeedsci.2018.06.011.

Liu, Y., C. D. Espinosa, J. J. Abelilla, G. A. Casas, L. V. Lagos, S. A. Lee, W. B. Kwon, J. K. Mathai, D. M. D. L. Navarro, N. W. Jaworski, & H. H. Stein. (2018). Non-antibiotic feed additives in diets for pigs: A review. Animal Nutrition. 10.1016/j.aninu.2018.01.007.

Long, L., J. Chen, Y. Zhang, X. Liang, H. Ni, B. Zhang, & Y. Yin. (2017). Comparison of porous and nano zinc oxide for replacing high-dose dietary regular zinc oxide in weaning piglets. Y. K. Mishra, editor. PLoS One. 12:e0182550. 10.1371/journal.pone.0182550.

Martin, M. J., S. E. Thottathil, & T. B. Newman. (2015). Antibiotics overuse in animal agriculture: A call to action for health care providers. American Journal of Public Health. 105:2409–2410. 10.2105/AJPH.2015.302870.

McDowell, L. R. (2003). Minerals in animal and human nutrition. Elsevier Inc. 10.1016/B978-0-444-51367-0.X5001-6.

Milani, N. C., M. Sbardella, N. Y. Ikeda, A. Arno, B. C. Mascarenhas, & V. S. Miyada. (2017). Dietary zinc oxide nanoparticles as growth promoter for weanling pigs. Animal Feed Science and Technology. 227:13–23. 10.1016/j.anifeedsci.2017.03.001.

Misiura, M. M., J. A. N. Filipe, C. L. Walk, & I. Kyriazakis. (2020). How do pigs deal with dietary phosphorus deficiency? British Journal of Nutrition. 124:256–272. 10.1017/S0007114520000975.

Moeser, A. J., C. S. Pohl, & M. Rajput. (2017). Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Animal Nutrition. 3:313–321. 10.1016/j.aninu.2017.06.003.

O’Doherty, J. V., C. S. Nolan, J. J. Callan, & P. McCarthy. (2004). The interaction between lactose feed level and soya-bean meal on growth performance of weanling pigs. Animal Science. 78:419–427. 10.1017/S1357729800058823.

O’Shea, C. J., P. McAlpine, T. Sweeney, P. F. Varley, & J. V. O’Doherty. (2014). Effect of the interaction of seaweed extracts containing laminarin and fucoidan with zinc oxide on the growth performance, digestibility and fecal characteristics of growing piglets. British Journal of Nutrition. 111:798–807. 10.1017/S0007114513003280.

Pierce, K. M., J. J. Callan, P. McCarthy, & J. V. O’Doherty. (2005). Performance of weanling pigs offered low or high lactose diets supplemented with avilamycin or inulin. Animal Science. 80:313–318. 10.1079/ASC40900313.

Raquipo, J. M. B., F. C. C. Reyes, B. A. Moog, E. P. Angeles, S. Regaspi, Anthony Francis, & A. M. Cuizon. (2017). Performance of nursery pigs fed diets with coated or potentiated zinc oxide. Philippine Journal of Veterinary and Animal Science. 43:133–138.

Rostagno, H. S., L. F. T. Albino, J. L. Donzele, P. C. Gomes, R. F. de Oliveira, D. C. Lopes, A. S. Ferreira, S. L. T. Barreto, & R. Euclides. (2017). Brazilian tables for poultry and swine: composition of feedstuffs and nutritional requirements. 4th Edition.; UFV: Viçosa, Brazil.

Shen, J., Y. Chen, Z. Wang, A. Zhou, M. He, L. Mao, H. Zou, Q. Peng, B. Xue, L. Wang, X. Zhang, S. Wu, & Y. Lv. (2014). Coated zinc oxide improves intestinal immunity function and regulates microbiota composition in weaned piglets. British Journal of Nutrition. 111:2123–2134. 10.1017/S0007114514000300.

Sirelkhatim, A., S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, & D. Mohamad. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Microbiology Letter. 7:219–242. 10.1007/s40820-015-0040-x.

Song, Z. H., K. Xiao, Y. L. Ke, L. F. Jiao, & C. H. Hu. (2015). Zinc oxide influences mitogen-activated protein kinase and TGF-β1 signaling pathways, and enhances intestinal barrier integrity in weaned pigs. Innate Immunology. 21:341–348. 10.1177/1753425914536450.

Upadhaya, S. D., Y. M. Kim, K. Y. Lee, & I. H. Kim. (2018). Use of protected zinc oxide in lower doses in weaned pigs in substitution for the conventional high dose zinc oxide. Animal Feed Science and Technology. 240:1–10. 10.1016/j.anifeedsci.2018.03.012.

Wang, C., Ligen Zhang, Z. Ying, J. He, L. Zhou, Lili Zhang, X. Zhong, & T. Wang. (2018). Effects of dietary zinc oxide nanoparticles on growth, diarrhea, mineral deposition, intestinal morphology, and barrier of weaned piglets. Biological Trace Elements Research. 185:364–374. 10.1007/s12011-018-1266-5.

Yazdankhah, S., K. Rudi, & A. Bernhoft. (2014). Zinc and copper in animal feed – development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microbial Ecology of Health and Disorders. 10.3402/mehd.v25.25862.

Zhang, L., Y. Jiang, Y. Ding, M. Povey, & D. York. (2007). Investigation into the antibacterial behavior of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal Nanoparticle Research. 9:479–489. 10.1007/s11051-006-9150-1.

Downloads

Publicado

16/12/2022

Como Citar

MOITA, V. H. C. .; SILVA , B. A. N. .; CARDOSO , D. de S.; CHAVES , R. F. .; CARDOSO , H. M. C. .; GONÇALVES , M. F. .; LIMA, V. R. .; GARCIA , W. A. .; DUARTE , M. E. .; ABREU, M. L. T. de . Efeito de uma fonte potencializada de oxido de zinco no crescimento, incidência de diarreia, excreção mineral, e resistência óssea de leitões em fase de creche. Research, Society and Development, [S. l.], v. 11, n. 16, p. e514111638715, 2022. DOI: 10.33448/rsd-v11i16.38715. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/38715. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências Agrárias e Biológicas