Use of application for carbohydrates counting as a tool to help in the self-management of type 1 diabetes mellitus: a systematic review

Authors

DOI:

https://doi.org/10.33448/rsd-v12i1.39270

Keywords:

Diabetes mellitus type 1; Dietary carbohydrates; Wireless technology.

Abstract

Apps for counting carbohydrates (CCHO) contribute with countless possibilities to support the treatment of people with diabetes, helping with nutritional therapy. However, there is a scarce amount of studies that evaluate the use of this technology, making it of great value to identify its possible benefits. The present study aimed to verify the use of applications for CCHO in the self-management of the treatment of type 1 diabetes mellitus (DM1). This is a systematic review, carried out through research on the platforms MedLine, LILACS, Portal de Periódicos CAPES and EBSCOhost, with articles published from 2011 to 2021, searched between April and June 2021, with descriptors “Diabetes Mellitus, Type 1 ” and “Carbohydrate count” and “Mobile Apps”. Original studies of the randomized clinical trial type were included and non-original articles, studies carried out with pregnant women and patients with type 2 diabetes mellitus were excluded. Initially, 67 articles published in full were found, of which, after removing duplicates, 60 remained. After applying the eligibility criteria, two studies remained, with a population between 12 and 46 participants and intervention time around 90 and 104 days. The apps used were iSpy and VoiceDiab. Among the main outcomes, the improvement in CCHO accuracy, reduction in glycated hemoglobin and longer time on target stand out. Therefore, it is possible to conclude that the use of applications for the CCHO is associated with several benefits, due to its more accurate estimation of the amounts of CHO, corroborating with better glycemic control.

Author Biographies

Natália Souza Dantas, Universidade Federal do Ceará

Nutricionista (Universidade de Fortaleza). Universidade Federal do Ceará, Programa de Pós-Graduação em Residência Integrada Multiprofissional em Atenção Hospitalar à Saúde. Fortaleza – Ceará, Brasil. ORCID: https://orcid.org/0000-0002-5074-7618.

Natasha Vasconcelos Albuquerque, Universidade Federal do Ceará

Mestre em Saúde Pública (Universidade Federal do Ceará). Universidade Federal do Ceará, Doutorado em Saúde Pública. Fortaleza – Ceará, Brasil.

Tatiana Rebouças Moreira, Universidade Federal do Ceará

Mestre em Cuidados Clínicos em Enfermagem e Saúde (Universidade Estadual do Ceará). Universidade Estadual do Ceará, Doutorado em Cuidados Clínicos em Enfermagem e Saúde. Fortaleza – Ceará, Brasil.

Alane Nogueira Bezerra, Universidade Federal do Ceará

Mestre em Nutrição e Saúde (Universidade Estadual do Ceará). Universidade Federal do Ceará, Doutorado em Ciências Médicas. Fortaleza – Ceará, Brasil.

Lorena Taúsz Tavares Ramos, Universidade Federal do Ceará

Graduada em Nutrição (Universidade Estadual do Ceará). Universidade Federal do Ceará, Mestrado em Saúde Pública. Fortaleza – Ceará, Brasil.

Kamila Silva Camelo Rebouças, Universidade Federal do Ceará

Universidade Federal do Ceará, Programa de Pós-Graduação em Residência Integrada Multiprofissional em Atenção Hospitalar à Saúde. Fortaleza – Ceará, Brasil.

Renata Cristina Machado Mendes, Universidade Federal do Ceará

Mestre em Nutrição e Saúde (Universidade Estadual do Ceará). Universidade Federal do Ceará, Programa de Pós-Graduação em Residência Integrada Multiprofissional em Atenção Hospitalar à Saúde. Fortaleza – Ceará, Brasil.

References

Ahola, A. J., Mäkimattila, S., Saraheimo, M., Mikkilä, V., Forsblom, C., Freese, R., Groop, P. H., & FinnDIANE Study Group (2010). Many patients with Type 1 diabetes estimate their prandial insulin need inappropriately. Journal of Diabetes, 2(3), 194–202. https://doi.org/10.1111/j.1753-0407.2010.00086.x

Alfonsi, J. E., Choi, E. E. Y., Arshad, T., Sammott, S. S., Pais, V., Nguyen, C., Maguire, B. R., Stinson, J. N., & Palmert, M. R. (2020). Carbohydrate Counting App Using Image Recognition for Youth With Type 1 Diabetes: Pilot Randomized Control Trial. JMIR mHealth and uHealth, 8(10), e22074. https://doi.org/10.2196/22074

American Diabetes Association (2020). Standards of Medical Care in Diabetes-2020 Abridged for Primary Care Providers. Clinical diabetes: a publication of the American Diabetes Association, 38(1), 10–38. https://doi.org/10.2337/cd20-as01

Bayram, S., Kızıltan, G., & Akın, O. (2020). Effect of adherence to carbohydrate counting on metabolic control in children and adolescents with type 1 diabetes mellitus. Annals of pediatric endocrinology & metabolism, 25(3), 156–162. https://doi.org/10.6065/apem.1938192.096

Brasil. Ministério da Saúde. Secretaria de Ciência. (2012). Tecnologia e Insumos Estratégicos. Diretrizes metodológicas: elaboração de revisão sistemática e metanálise de ensaios clínicos randomizados. http://bvsms.saude.gov.br/bvs/publicacoes/diretrizes_metodologicas_elaboracao_sistematica.pdf

Chotwanvirat, P., Hnoohom, N., Rojroongwasinkul, N., & Kriengsinyos, W. (2021). Feasibility Study of an Automated Carbohydrate Estimation System Using Thai Food Images in Comparison With Estimation by Dietitians. Frontiers in nutrition, 8, 732449. https://doi.org/10.3389/fnut.2021.732449

Fu, S., Li, L., Deng, S., Zan, L., & Liu, Z. (2016). Effectiveness of advanced carbohydrate counting in type 1 diabetes mellitus: a systematic review and meta-analysis. Scientific reports, 6(1), 37067. https://doi.org/10.1038/srep37067

Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (Eds). (2022). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane. www.training.cochrane.org/handbook

International Diabetes Federation (2019). IDF diabetes atlas, 9th ed, Brussels International Diabetes Federation. http://www.idf.org/diabetesatlas

Joubert, M., Meyer, L., Doriot, A., Dreves, B., Jeandidier, N., & Reznik, Y. (2021). Prospective Independent Evaluation of the Carbohydrate Counting Accuracy of Two Smartphone Applications. Diabetes Therapy, 12(7), 1809–1820. https://doi.org/10.1007/s13300-021-01082-2

Kawamura, T., Takamura, C., Hirose, M., Hashimoto, T., Higashide, T., Kashihara, Y., Hashimura, K., & Shintaku, H. (2015). The factors affecting on estimation of carbohydrate content of meals in carbohydrate counting. Clinical Pediatric Endocrinology, 24(4), 153–165. https://doi.org/10.1297/cpe.24.153

Ladyzynski, P., Krzymien, J., Foltynski, P., Rachuta, M., & Bonalska, B. (2018). Accuracy of Automatic Carbohydrate, Protein, Fat and Calorie Counting Based on Voice Descriptions of Meals in People with Type 1 Diabetes. Nutrients, 10(4), 518. https://doi.org/10.3390/nu10040518

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2015). Principais itens para relatar Revisões Sistemáticas e Meta-análises: A recomendação PRISMA. Rev Epidemiol Serv Saúde, 24 (2), 335-342. 10.5123/S1679-49742015000200017

Ndahura, N. B., Munga, J., Kimiywe, J., & Mupere, E. (2021). Caregivers’ Nutrition Knowledge and Dietary Intake of Type 1 Diabetic Children Aged 3–14 Years in Uganda. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 127–137. https://doi.org/10.2147/dmso.s285979

Pańkowska, E., Ładyżyński, P., Foltyński, P., & Mazurczak, K. (2017). A Randomized Controlled Study of an Insulin Dosing Application That Uses Recognition and Meal Bolus Estimations. Journal of Diabetes Science and Technology, 11(1), 43–49. https://doi.org/10.1177/1932296816683409

Rhyner, D., Loher, H., Dehais, J., Anthimopoulos, M., Shevchik, S., Botwey, R. H., Duke, D., Stettler, C., Diem, P., & Mougiakakou, S. (2016). Carbohydrate Estimation by a Mobile Phone-Based System Versus Self-Estimations of Individuals With Type 1 Diabetes Mellitus: A Comparative Study. Journal of Medical Internet Research, 18(5), e101. https://doi.org/10.2196/jmir.5567

Rinker, J., Dickinson, J. K., Litchman, M. L., Williams, A. S., Kolb, L. E., Cox, C., & Lipman, R. D. (2018). The 2017 Diabetes Educator and the Diabetes Self-Management Education National Practice Survey. The Diabetes Educator, 44(3), 260–268. https://doi.org/10.1177/0145721718765446

Santos, C. M. da C., Pimenta, C. A. de M., & Nobre, M. R. C. (2007). A estratégia PICO para a construção da pergunta de pesquisa e busca de evidências. Revista Latino-Americana de Enfermagem, 15 (3), 508-511. https://doi.org/10.1590/S0104-11692007000300023

Sociedade Brasileira de Diabetes (2019). Tratamento de diabetes mellitus tipo 1: manejo da hiperglicemia. In: SBD. Sociedade Brasileira de Diabetes. Diretrizes da Sociedade Brasileira de Diabetes – 2019-2020. São Paulo: Editora Clannad.

Sociedade Brasileira de Diabetes (2016). Manual de contagem de carboidratos para as pessoas com diabetes. Rio de Janeiro: Sociedade Brasileira de Diabetes.

Tascini, G., Berioli, M., Cerquiglini, L., Santi, E., Mancini, G., Rogari, F., Toni, G., & Esposito, S. (2018). Carbohydrate Counting in Children and Adolescents with Type 1 Diabetes. Nutrients, 10(1), 109. https://doi.org/10.3390/nu10010109

Rassi, N., Salles, J. E. N., & Silva, S. C. (2021). Insulinoterapia no Diabetes Melito Tipo 1. In: Vilar, L., Naves, L. A., Freitas, M. C., & Fleseriu, M. Endocrinologia Clínica. Rio de Janeiro: Guanabara Koogan.

World Health Organization (2016). Global report on diabetes. Who.int. https://doi.org/9789241565257

Published

01/01/2023

How to Cite

DANTAS, N. S. .; ALBUQUERQUE, N. V. .; REBOUÇAS MOREIRA, T. .; BEZERRA, A. N. .; RAMOS, L. T. T. .; REBOUÇAS, K. S. C. .; MENDES, R. C. M. . Use of application for carbohydrates counting as a tool to help in the self-management of type 1 diabetes mellitus: a systematic review . Research, Society and Development, [S. l.], v. 12, n. 1, p. e3912139270, 2023. DOI: 10.33448/rsd-v12i1.39270. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/39270. Acesso em: 1 jan. 2025.

Issue

Section

Health Sciences